|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172 |
- """Decoders Matter for Semantic Segmentation"""
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
-
- from core.models.segbase import SegBaseModel
- from core.models.fcn import _FCNHead
-
- __all__ = ['DUNet', 'get_dunet', 'get_dunet_resnet50_pascal_voc',
- 'get_dunet_resnet101_pascal_voc', 'get_dunet_resnet152_pascal_voc']
-
-
- # The model may be wrong because lots of details missing in paper.
- class DUNet(SegBaseModel):
- """Decoders Matter for Semantic Segmentation
-
- Reference:
- Zhi Tian, Tong He, Chunhua Shen, and Youliang Yan.
- "Decoders Matter for Semantic Segmentation:
- Data-Dependent Decoding Enables Flexible Feature Aggregation." CVPR, 2019
- """
-
- def __init__(self, nclass, backbone='resnet50', aux=True, pretrained_base=True, **kwargs):
- super(DUNet, self).__init__(nclass, aux, backbone, pretrained_base=pretrained_base, **kwargs)
- self.head = _DUHead(2144, **kwargs)
- self.dupsample = DUpsampling(256, nclass, scale_factor=8, **kwargs)
- if aux:
- self.auxlayer = _FCNHead(1024, 256, **kwargs)
- self.aux_dupsample = DUpsampling(256, nclass, scale_factor=8, **kwargs)
-
- self.__setattr__('exclusive',
- ['dupsample', 'head', 'auxlayer', 'aux_dupsample'] if aux else ['dupsample', 'head'])
-
- def forward(self, x):
- c1, c2, c3, c4 = self.base_forward(x)#继承自SegBaseModel;返回的是resnet的layer1,2,3,4的输出
- outputs = []
- x = self.head(c2, c3, c4)
- x = self.dupsample(x)
- outputs.append(x)
-
- if self.aux:
- auxout = self.auxlayer(c3)
- auxout = self.aux_dupsample(auxout)
- outputs.append(auxout)
- #return tuple(outputs)
- return outputs[0]
-
- class FeatureFused(nn.Module):
- """Module for fused features"""
-
- def __init__(self, inter_channels=48, norm_layer=nn.BatchNorm2d, **kwargs):
- super(FeatureFused, self).__init__()
- self.conv2 = nn.Sequential(
- nn.Conv2d(512, inter_channels, 1, bias=False),
- norm_layer(inter_channels),
- nn.ReLU(True)
- )
- self.conv3 = nn.Sequential(
- nn.Conv2d(1024, inter_channels, 1, bias=False),
- norm_layer(inter_channels),
- nn.ReLU(True)
- )
-
- def forward(self, c2, c3, c4):
- size = c4.size()[2:]
- c2 = self.conv2(F.interpolate(c2, size, mode='bilinear', align_corners=True))
- c3 = self.conv3(F.interpolate(c3, size, mode='bilinear', align_corners=True))
- fused_feature = torch.cat([c4, c3, c2], dim=1)
- return fused_feature
-
-
- class _DUHead(nn.Module):
- def __init__(self, in_channels, norm_layer=nn.BatchNorm2d, **kwargs):
- super(_DUHead, self).__init__()
- self.fuse = FeatureFused(norm_layer=norm_layer, **kwargs)
- self.block = nn.Sequential(
- nn.Conv2d(in_channels, 256, 3, padding=1, bias=False),
- norm_layer(256),
- nn.ReLU(True),
- nn.Conv2d(256, 256, 3, padding=1, bias=False),
- norm_layer(256),
- nn.ReLU(True)
- )
-
- def forward(self, c2, c3, c4):
- fused_feature = self.fuse(c2, c3, c4)
- out = self.block(fused_feature)
- return out
-
-
- class DUpsampling(nn.Module):
- """DUsampling module"""
-
- def __init__(self, in_channels, out_channels, scale_factor=2, **kwargs):
- super(DUpsampling, self).__init__()
- self.scale_factor = scale_factor
- self.conv_w = nn.Conv2d(in_channels, out_channels * scale_factor * scale_factor, 1, bias=False)
-
- def forward(self, x):
- x = self.conv_w(x)
- n, c, h, w = x.size()
-
- # N, C, H, W --> N, W, H, C
- x = x.permute(0, 3, 2, 1).contiguous()
-
- # N, W, H, C --> N, W, H * scale, C // scale
- x = x.view(n, w, h * self.scale_factor, c // self.scale_factor)
-
- # N, W, H * scale, C // scale --> N, H * scale, W, C // scale
- x = x.permute(0, 2, 1, 3).contiguous()
-
- # N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
- x = x.view(n, h * self.scale_factor, w * self.scale_factor, c // (self.scale_factor * self.scale_factor))
-
- # N, H * scale, W * scale, C // (scale ** 2) -- > N, C // (scale ** 2), H * scale, W * scale
- x = x.permute(0, 3, 1, 2)
-
- return x
-
- def get_dunet(dataset='pascal_voc', backbone='resnet50', pretrained=False,
- root='~/.torch/models', pretrained_base=True, **kwargs):
- acronyms = {
- 'pascal_voc': 'pascal_voc',
- 'pascal_aug': 'pascal_aug',
- 'ade20k': 'ade',
- 'coco': 'coco',
- 'citys': 'citys',
- }
- from ..data.dataloader import datasets
- model = DUNet(datasets[dataset].NUM_CLASS, backbone=backbone, pretrained_base=pretrained_base, **kwargs)
- if pretrained:
- from .model_store import get_model_file
- device = torch.device(kwargs['local_rank'])
- model.load_state_dict(torch.load(get_model_file('dunet_%s_%s' % (backbone, acronyms[dataset]), root=root),
- map_location=device))
- return model
-
-
- def get_dunet_resnet50_pascal_voc(**kwargs):
- return get_dunet('pascal_voc', 'resnet50', **kwargs)
-
-
- def get_dunet_resnet101_pascal_voc(**kwargs):
- return get_dunet('pascal_voc', 'resnet101', **kwargs)
-
-
- def get_dunet_resnet152_pascal_voc(**kwargs):
- return get_dunet('pascal_voc', 'resnet152', **kwargs)
-
-
- if __name__ == '__main__':
- # img = torch.randn(2, 3, 256, 256)
- # model = get_dunet_resnet50_pascal_voc()
- # outputs = model(img)
- input = torch.rand(2, 3, 224, 224)
- model = DUNet(4, pretrained_base=False)
- # target = torch.zeros(4, 512, 512).cuda()
- # model.eval()
- # print(model)
- loss = model(input)
- print(loss, loss.shape)
-
- # from torchsummary import summary
- #
- # summary(model, (3, 224, 224)) # 打印表格,按顺序输出每层的输出形状和参数
- import torch
- from thop import profile
- from torchsummary import summary
-
- input = torch.randn(1, 3, 512, 512)
- flop, params = profile(model, inputs=(input, ))
- print('flops:{:.3f}G\nparams:{:.3f}M'.format(flop / 1e9, params / 1e6))
|