"ESPNetv2: A Light-weight, Power Efficient, and General Purpose for Semantic Segmentation" import torch import torch.nn as nn import torch.nn.functional as F from core.models.base_models import eespnet, EESP from core.nn import _ConvBNPReLU, _BNPReLU class ESPNetV2(nn.Module): r"""ESPNetV2 Parameters ---------- nclass : int Number of categories for the training dataset. backbone : string Pre-trained dilated backbone network type (default:'resnet50'; 'resnet50', 'resnet101' or 'resnet152'). norm_layer : object Normalization layer used in backbone network (default: :class:`nn.BatchNorm`; for Synchronized Cross-GPU BachNormalization). aux : bool Auxiliary loss. Reference: Sachin Mehta, et al. "ESPNetv2: A Light-weight, Power Efficient, and General Purpose Convolutional Neural Network." arXiv preprint arXiv:1811.11431 (2018). """ def __init__(self, nclass, backbone='', aux=False, jpu=False, pretrained_base=False, **kwargs): super(ESPNetV2, self).__init__() self.pretrained = eespnet(pretrained=pretrained_base, **kwargs) self.proj_L4_C = _ConvBNPReLU(256, 128, 1, **kwargs) self.pspMod = nn.Sequential( EESP(256, 128, stride=1, k=4, r_lim=7, **kwargs), _PSPModule(128, 128, **kwargs)) self.project_l3 = nn.Sequential( nn.Dropout2d(0.1), nn.Conv2d(128, nclass, 1, bias=False)) self.act_l3 = _BNPReLU(nclass, **kwargs) self.project_l2 = _ConvBNPReLU(64 + nclass, nclass, 1, **kwargs) self.project_l1 = nn.Sequential( nn.Dropout2d(0.1), nn.Conv2d(32 + nclass, nclass, 1, bias=False)) self.aux = aux self.__setattr__('exclusive', ['proj_L4_C', 'pspMod', 'project_l3', 'act_l3', 'project_l2', 'project_l1']) def forward(self, x): size = x.size()[2:] out_l1, out_l2, out_l3, out_l4 = self.pretrained(x, seg=True) out_l4_proj = self.proj_L4_C(out_l4) up_l4_to_l3 = F.interpolate(out_l4_proj, scale_factor=2, mode='bilinear', align_corners=True) merged_l3_upl4 = self.pspMod(torch.cat([out_l3, up_l4_to_l3], 1)) proj_merge_l3_bef_act = self.project_l3(merged_l3_upl4) proj_merge_l3 = self.act_l3(proj_merge_l3_bef_act) out_up_l3 = F.interpolate(proj_merge_l3, scale_factor=2, mode='bilinear', align_corners=True) merge_l2 = self.project_l2(torch.cat([out_l2, out_up_l3], 1)) out_up_l2 = F.interpolate(merge_l2, scale_factor=2, mode='bilinear', align_corners=True) merge_l1 = self.project_l1(torch.cat([out_l1, out_up_l2], 1)) outputs = list() merge1_l1 = F.interpolate(merge_l1, scale_factor=2, mode='bilinear', align_corners=True) outputs.append(merge1_l1) if self.aux: # different from paper auxout = F.interpolate(proj_merge_l3_bef_act, size, mode='bilinear', align_corners=True) outputs.append(auxout) #return tuple(outputs) return outputs[0] # different from PSPNet class _PSPModule(nn.Module): def __init__(self, in_channels, out_channels=1024, sizes=(1, 2, 4, 8), **kwargs): super(_PSPModule, self).__init__() self.stages = nn.ModuleList( [nn.Conv2d(in_channels, in_channels, 3, 1, 1, groups=in_channels, bias=False) for _ in sizes]) self.project = _ConvBNPReLU(in_channels * (len(sizes) + 1), out_channels, 1, 1, **kwargs) def forward(self, x): size = x.size()[2:] feats = [x] for stage in self.stages: x = F.avg_pool2d(x, kernel_size=3, stride=2, padding=1) upsampled = F.interpolate(stage(x), size, mode='bilinear', align_corners=True) feats.append(upsampled) return self.project(torch.cat(feats, dim=1)) def get_espnet(dataset='pascal_voc', backbone='', pretrained=False, root='~/.torch/models', pretrained_base=False, **kwargs): acronyms = { 'pascal_voc': 'pascal_voc', 'pascal_aug': 'pascal_aug', 'ade20k': 'ade', 'coco': 'coco', 'citys': 'citys', } from core.data.dataloader import datasets model = ESPNetV2(datasets[dataset].NUM_CLASS, backbone=backbone, pretrained_base=pretrained_base, **kwargs) if pretrained: from .model_store import get_model_file device = torch.device(kwargs['local_rank']) model.load_state_dict(torch.load(get_model_file('espnet_%s_%s' % (backbone, acronyms[dataset]), root=root), map_location=device)) return model def get_espnet_citys(**kwargs): return get_espnet('citys', **kwargs) if __name__ == '__main__': #model = get_espnet_citys() input = torch.rand(2, 3, 224, 224) model =ESPNetV2(4, pretrained_base=False) # target = torch.zeros(4, 512, 512).cuda() # model.eval() # print(model) loss = model(input) print(loss, loss.shape) # from torchsummary import summary # # summary(model, (3, 224, 224)) # 打印表格,按顺序输出每层的输出形状和参数 import torch from thop import profile from torchsummary import summary flop, params = profile(model, input_size=(1, 3, 512, 512)) print('flops:{:.3f}G\nparams:{:.3f}M'.format(flop / 1e9, params / 1e6))