import numpy as np import time,ast,copy from flask import request, Flask,jsonify import base64,cv2,os,sys,json sys.path.extend(['../yolov5']) #from Send_tranfer import b64encode_function,JsonSend,name_dic,nameID_dic,getLogFileFp from segutils.segmodel import SegModel,get_largest_contours from models.experimental import attempt_load from utils.datasets import LoadStreams, LoadImages from utils.torch_utils import select_device, load_classifier, time_synchronized from queRiver import get_labelnames,get_label_arrays,post_process_,save_problem_images,time_str import subprocess as sp import matplotlib.pyplot as plt import torch,random,string import multiprocessing from multiprocessing import Process,Queue import traceback from kafka import KafkaProducer, KafkaConsumer,TopicPartition from kafka.errors import kafka_errors #torch.multiprocessing.set_start_method('spawn') import utilsK from utilsK.GPUtils import * from utilsK.masterUtils import * from utilsK.sendUtils import create_status_msg,update_json #from utilsK.modelEval import onlineModelProcess import random,string from Send_tranfer_oss import msg_dict_on,msg_dict_off import pykafka from pykafka import KafkaClient process_id=0 def onlineModelProcess(parIn ): DEBUG=False streamName = parIn['streamName'] childCallback=parIn['callback'] outStrList={} #try: for wan in ['test']: jsonfile=parIn['modelJson'] with open(jsonfile,'r') as fp: parAll = json.load(fp) Detweights=parAll['gpu_process']['det_weights'] seg_nclass = parAll['gpu_process']['seg_nclass'] Segweights = parAll['gpu_process']['seg_weights'] videoSave = parAll['AI_video_save'] imageTxtFile = parAll['imageTxtFile'] taskId,msgId = streamName.split('-')[1:3] inSource,outSource=parIn['inSource'],parIn['outSource'] ##构建日志文件 if outSource != 'NO': logdir = parAll['logChildProcessOnline'] waitingTime=parAll['StreamWaitingTime'] else: logdir = parAll['logChildProcessOffline'] waitingTime=5 fp_log=create_logFile(logdir=logdir) kafka_par=parIn['kafka_par'] producer = KafkaProducer(bootstrap_servers=kafka_par['server'],value_serializer=lambda v: v.encode('utf-8'),metadata_max_age_ms=120000) ####要先检查视频的有效性 ###开始的时候,如果在线任务没有流,要发送的心跳消息,msg_h, msg_h= copy.deepcopy(msg_dict_off); msg_h['status']='waiting';msg_h['msg_id']=msgId if outSource == 'NO': msg_h['type']=1 Stream_ok= get_fps_rtmp(inSource,video=True) else: msg_h['type']=2 msg_h_d = json.dumps(msg_h, ensure_ascii=False) outStrList['success']= '%s waiting stream or video, send heartbeat: taskId:%s msgId:%s send:%s'%('-'*20,taskId, msgId,msg_h); outStrList['failure']='#######kafka ERROR waiting stream or video, send heartbeat' outStrList['Refailure']='##############kafka ERROR waiting stream or video, Re-send heartbeat' Stream_ok=check_stream(inSource,producer,kafka_par,msg_h_d,outStrList,fp_log ,timeMs=waitingTime) if Stream_ok:###发送开始信号 msg_h['status']='running' msg_h_d = json.dumps(msg_h, ensure_ascii=False) outStrList['success']= '%s informing stream/video is ok, taskId:%s msgId:%s send:%s'%('-'*20,taskId, msgId,msg_h); outStrList['failure']='#######kafka ERROR ,when informing stream/video is ok' outStrList['Refailure']='##############kafka ERROR, when re-informing stream/video is ok' send_kafka(producer,kafka_par,msg_h_d,outStrList,fp_log ); else: ####检测离线视频是否有效,无效要报错 outstr='############# offline vedio or live stream Error:%s #################'%(inSource) outstr=wrtiteLog(fp_log,outstr);print( outstr); msg_h['error']=str(1001);msg_h['status']='failed'; msg_h_d = json.dumps(msg_h, ensure_ascii=False); outStrList['success']= '%s informing invaid video or stream success : taskId:%s msgId:%s send:%s'%('-'*20,taskId, msgId,msg_h); outStrList['failure']='#######kafka ERROR, when informing invaid video or stream' outStrList['Refailure']='##############kafka ERROR,when re-informing invaid video or stream' send_kafka(producer,kafka_par,msg_h_d,outStrList,fp_log ); childCallback.send(' offline vedio or live stream Error') continue if (inSource.endswith('.MP4')) or (inSource.endswith('.mp4')): fps,outW,outH,totalcnt=get_fps_rtmp(inSource,video=True)[0:4] else: fps,outW,outH,totalcnt=get_fps_rtmp(inSource,video=False)[0:4] fps = int(fps+0.5) if outSource != 'NO': command=['ffmpeg','-y','-f', 'rawvideo','-vcodec','rawvideo','-pix_fmt', 'bgr24', '-s', "{}x{}".format(outW,outH),# 图片分辨率 '-r', str(fps),# 视频帧率 '-i', '-','-c:v', 'libx264','-pix_fmt', 'yuv420p', '-f', 'flv',outSource ] video_flag = videoSave['onLine'] logdir = parAll['logChildProcessOnline'] waitingTime=parAll['StreamWaitingTime'] else: video_flag = videoSave['offLine'] ;logdir = parAll['logChildProcessOffline'] waitingTime=5 fp_log=create_logFile(logdir=logdir) device = select_device(parIn['device']) half = device.type != 'cpu' # half precision only supported on CUDA model = attempt_load(Detweights, map_location=device) # load FP32 model if half: model.half() segmodel = SegModel(nclass=seg_nclass,weights=Segweights,device=device) # 管道配置,其中用到管道 if outSource !='NO' : ppipe = sp.Popen(command, stdin=sp.PIPE) ##后处理参数 par=parAll['post_process'] conf_thres,iou_thres,classes=par['conf_thres'],par['iou_thres'],par['classes'] outImaDir = par['outImaDir'] outVideoDir = par['outVideoDir'] labelnames=par['labelnames'] rainbows=par['rainbows'] fpsample = par['fpsample'] names=get_labelnames(labelnames) label_arraylist = get_label_arrays(names,rainbows,outfontsize=40) dataset = LoadStreams(inSource, img_size=640, stride=32) childCallback.send('####model load success####') if (outVideoDir!='NO') and video_flag: msg_id = streamName.split('-')[2] save_path = os.path.join(outVideoDir,msg_id+'.MP4') vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (outW,outH)) iframe = 0;post_results=[];time_beg=time.time() t00=time.time() time_kafka0=time.time() for path, img, im0s, vid_cap in dataset: t0= time_synchronized() if not path: EndUrl='%s/%s_frame-9999-9999_type-结束_9999999999999999_s-%s_AI.jpg'%(outImaDir,time_str(),streamName) EndUrl = EndUrl.replace(' ','-').replace(':','-') img_end=np.zeros((100,100),dtype=np.uint8);cv2.imwrite(EndUrl,img_end) if imageTxtFile: EndUrl_txt = EndUrl.replace('.jpg','.txt') fp_t=open(EndUrl_txt,'w');fp_t.write(EndUrl+'\n');fp_t.close() EndUrl='%s/%s_frame-9999-9999_type-结束_9999999999999999_s-%s_OR.jpg'%(outImaDir,time_str(),streamName) EndUrl = EndUrl.replace(' ','-').replace(':','-') ret = cv2.imwrite(EndUrl,img_end) if imageTxtFile: EndUrl_txt = EndUrl.replace('.jpg','.txt') fp_t=open(EndUrl_txt,'w');fp_t.write(EndUrl+'\n');fp_t.close() #print(EndUrl,ret) childCallback.send('####strem ends####') if (outVideoDir!='NO') and video_flag: vid_writer.release() break###断流或者到终点 if outSource == 'NO':###如果不推流,则显示进度条 view_bar(iframe,totalcnt,time_beg ,parIn['process_uid'] ) ###直播和离线都是1分钟发一次消息。直播发 time_kafka1 = time.time() if time_kafka1 - time_kafka0 >60: time_kafka0 = time_kafka1 ###发送状态信息waiting msg = copy.deepcopy(msg_dict_off); msg['msg_id']= msgId; msg if outSource == 'NO': msg['progressbar']= '%.4f'%(iframe*1.0/totalcnt) msg['type']=1 else: msg['progressbarOn']= str(iframe) msg['type']=2 msg = json.dumps(msg, ensure_ascii=False) ''' try: record_metadata = producer.send(kafka_par['topic'], msg).get() outstr='%s processing send progressbar or heartBeat to kafka: taskId:%s msgId:%s send:%s'%('-'*20,taskId, msgId,msg); wrtiteLog(fp_log,outstr);print( outstr); except Exception as e: outstr='#######kafka ERROR when processing sending progressbar or heartBeat:, error: %s'%(str(e)) wrtiteLog(fp_log,outstr);print( outstr); try: producer = KafkaProducer(bootstrap_servers=par['server'], value_serializer=lambda v: v.encode('utf-8')).get() future = producer.send(par['topic'][2], msg).get() except Exception as e: outstr='%s re-send progressbar or heartBeat kafka,processing video or stream: taskId:%s msgId:%s send:%s'%('-'*20,taskId, msgId,msg); wrtiteLog(fp_log,outstr);print( outstr); ''' ###发送状态信息waiting outStrList['success']= '%s processing send progressbar or heartBeat to kafka: taskId:%s msgId:%s send:%s'%('-'*20,taskId, msgId,msg); outStrList['failure']='#######kafka ERROR when processing sending progressbar or heartBeat' outStrList['Refailure']='%s re-send progressbar or heartBeat kafka,processing video or stream: taskId:%s msgId:%s send:%s'%('-'*20,taskId, msgId,msg); send_kafka(producer,kafka_par,msg,outStrList,fp_log ); time0=time.time() iframe +=1 time1=time.time() img = torch.from_numpy(img).to(device) img = img.half() if half else img.float() # uint8 to fp16/32 img /= 255.0 # 0 - 255 to 0.0 - 1.0 timeseg0 = time.time() seg_pred,segstr = segmodel.eval(im0s[0] ) timeseg1 = time.time() t1= time_synchronized() pred = model(img,augment=False)[0] time4 = time.time() datas = [path, img, im0s, vid_cap,pred,seg_pred,iframe] p_result,timeOut = post_process_(datas,conf_thres, iou_thres,names,label_arraylist,rainbows,iframe) t2= time_synchronized() #print('###line138:',timeOut,outSource,outVideoDir) ##每隔 fpsample帧处理一次,如果有问题就保存图片 if (iframe % fpsample == 0) and (len(post_results)>0) : parImage=save_problem_images(post_results,iframe,names,streamName=streamName,outImaDir='problems/images_tmp',imageTxtFile=imageTxtFile) post_results=[] if len(p_result[2] )>0: ## post_results.append(p_result) t3= time_synchronized() image_array = p_result[1] if outSource!='NO': ppipe.stdin.write(image_array.tobytes()) if (outVideoDir!='NO') and video_flag: ret = vid_writer.write(image_array) t4= time_synchronized() timestr2 = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) if iframe%100==0: outstr='%s,,read:%.1f ms,copy:%.1f, infer:%.1f ms, detinfer:%.1f ms,draw:%.1f ms, save:%.1f ms total:%.1f ms \n'%(timestr2,(t0 - t00)*1000,(timeseg0-t0)*1000, (t1 - timeseg0)*1000,(t2-t1)*1000, (t3 - t2)*1000,(t4-t3)*1000, (t4-t00)*1000) wrtiteLog(fp_log,outstr); #print(outstr) t00 = t4; ##模型加载之类的错误 #except Exception as e: # print(time.strftime("%Y-%m-%d %H:%M:%S ", time.localtime()) ,'*'*20,'###line177 ERROR:',e) # childCallback.send(e) #将异常通过管道送出 def lauch_process(gpuid,inSource,outSource,taskId,msgId,modelJson,kafka_par): if outSource=='NO': streamName='off-%s-%s'%(taskId,msgId) else: streamName='live-%s-%s'%(taskId,msgId) dataPar ={ 'imgData':'', 'imgName':'testW', 'streamName':streamName, 'taskId':taskId, 'msgId':msgId, 'device':str(gpuid), 'modelJson':modelJson, 'kafka_par':kafka_par, } #dataPar['inSource'] = 'http://images.5gai.taauav.com/video/8bc32984dd893930dabb2856eb92b4d1.mp4';dataPar['outSource'] = None dataPar['inSource'] = inSource;dataPar['outSource'] = outSource process_uid=''.join(random.sample(string.ascii_letters + string.digits, 16));dataPar['process_uid']=process_uid parent_conn, child_conn = multiprocessing.Pipe();dataPar['callback']=child_conn gpuProcess=Process(target=onlineModelProcess,name='process:%s'%( process_uid ),args=(dataPar,)) gpuProcess.start() #print(dir(gpuProcess)) #child_return = parent_conn.recv() #timestr2=time.strftime("%Y-%m-%d %H:%M:%S ", time.localtime()) #print(timestr2,'-'*20,'progress:%s ,msgId:%s , taskId:%s return:'%(process_uid,msgId,taskId),child_return) return gpuProcess msg_dict_offline = { "biz_id":"hehuzhang", "mod_id":"ai", "msg_id":'bb'+''.join(random.sample(string.ascii_letters ,30) ) , "offering_id":"http://vod.play.t-aaron.com/customerTrans/c49a2c620795d124f2ae4b10197b8d0e/303b7a58-17f3ef4494e-0004-f90c-f2c-7ec68.mp4", "offering_type":"mp4", "results_base_dir": "XJRW202203171535"+str(random.randint(10,99)), 'outSource':'NO' } def detector(par): ####初始化信息列表 consumer = KafkaConsumer(bootstrap_servers=par['server'],client_id='AI_server',group_id=par['group_id'],auto_offset_reset='earliest') consumer.subscribe( par['topic'][0:2]) ''' client = KafkaClient(hosts=par['server']) consumer_pys=[] for topic_name in par['topic'][0:2]: consumer_pys.append(client.topics[ topic_name ].get_simple_consumer(consumer_group=par['group_id'],timeout=30)) ''' kafka_par ={ 'server':par['server'],'topic':par['topic'][2] } producer = KafkaProducer( bootstrap_servers=par['server'],#tencent yun value_serializer=lambda v: v.encode('utf-8'), metadata_max_age_ms=120000) taskStatus={} taskStatus['onLine'] = Queue(100) taskStatus['offLine']= Queue(100) taskStatus['pidInfos']= {} fp_log=create_logFile(logdir=par['logDir']) wrtiteLog(fp_log,'###########masster starts in line222######\n') timeSleep=1 #taskStatus['pidInfos'][31897]={'gpuProcess':'onlineProcess','type':'onLine'} time0=time.time() time0_kafQuery=time.time() time0_taskQuery=time.time() time0_sleep=time.time() time_interval=10; outStrList={} while True:###每隔timeSleep秒,轮询一次 #for isleep in range(1): ''' ##1-读取kafka,更新任务类别 try: msgs = getAllRecords(consumer,par['topic']) except Exception as e: outstr='%s kafka connecting error:%s '%('#'*20,e) outstr=wrtiteLog(fp_log,outstr);print( outstr); time.sleep(timeSleep) continue #if get_whether_gpuProcess(): time0_kafQuery,printFlag = check_time_interval(time0_kafQuery,time_interval) if printFlag: outstr_kafka=' ##### kafka Left %d records####'%(len(msgs)); outstr_kafka=wrtiteLog(fp_log,outstr_kafka) ''' for ii,msg in enumerate(consumer): #for ii,msg in enumerate(msgs): ##读取消息 try: taskInfos = eval(msg.value.decode('utf-8') ) except: outstr='%s msg format error,value:%s,offset:%d partition:%s topic:%s'%('#'*20,msg.value,msg.offset,msg.topic,msg.topic) continue if msg.topic == par['topic'][0]: ## taskInfos['inSource']= taskInfos['pull_channel']; taskInfos['outSource']= get_push_address(taskInfos['push_channel']) ; taskStatus['onLine'].put( taskInfos ) save_message(par['kafka'],taskInfos) ###发送状态信息waiting msg = create_status_msg(msg_dict_on,taskInfos,sts='waiting') outStrList['success']= '%s read from kafka online task and back to kafka: taskId:%s msgId:%s send:%s'%('-'*20,taskInfos['results_base_dir'], taskInfos['msg_id'],msg) outStrList['failure']='#######kafka ERROR when read from kafka online task and back to kafka' outStrList['Refailure']='##############kafka ERROR when read from kafka online task and resend back to kafka:' send_kafka(producer,kafka_par,msg,outStrList,fp_log ); else: taskInfos['inSource']= taskInfos['offering_id']; taskInfos['outSource']= 'NO' taskStatus['offLine'].put( taskInfos ) save_message(par['kafka'],taskInfos) ###发送状态信息waiting msg = create_status_msg(msg_dict_off,taskInfos,sts='waiting') outStrList['success']= '%s read from kafka offline task and back to kafka: taskId:%s msgId:%s send:%s'%('-'*20,taskInfos['results_base_dir'], taskInfos['msg_id'],msg) outStrList['failure']='#######kkafka ERROR when read from kafka offline task and back to kafka:,' outStrList['Refailure']='##############kafka ERROR when read from kafka offline task and resend back to kafka:' send_kafka(producer,kafka_par,msg,outStrList,fp_log ); time0_taskQuery,printFlag = check_time_interval(time0_taskQuery,time_interval) outstr_task= ' task queue onLine cnt:%d offLine:%d'%(taskStatus['onLine'].qsize(), taskStatus['offLine'].qsize()) ##2-更新显卡信息 gpuStatus = getGPUInfos() ##3-优先考虑在线任务 if not taskStatus['onLine'].empty(): ###3.1-先判断有没有空闲显卡: cuda = get_available_gpu(gpuStatus) ###获取在线任务信息,并执行,lauch process taskInfos = taskStatus['onLine'].get() print('################396',cuda) if cuda: ###3.1.1 -有空余显卡 #lauch process msg= copy.deepcopy(msg_dict_on); gpuProcess=lauch_process(cuda,taskInfos['inSource'],taskInfos['outSource'],taskInfos['results_base_dir'],taskInfos['msg_id'],par['modelJson'],kafka_par) taskStatus['pidInfos'][gpuProcess.pid] = {'gpuProcess':gpuProcess,'type':'onLine','taskInfos':taskInfos} else:###3.1.2-没有显卡 ##判断有没有显卡上面都是离线进程的 cuda_pid = get_potential_gpu(gpuStatus,taskStatus['pidInfos']) if cuda_pid:#3.1.2.1 - ##如果有可以杀死的进程 cuda = cuda_pid['cuda'] pids = cuda_pid['pids'] ##kill 离线进程,并更新离线任务表 cnt_off_0 = taskStatus['offLine'].qsize() for pid in pids: ##kill 离线进程 taskStatus['pidInfos'][pid]['gpuProcess'].kill() ##更新离线任务表 taskStatus['offLine'].put( taskStatus['pidInfos'][pid]['taskInfos'] ) taskInfos_off=taskStatus['pidInfos'][pid]['taskInfos'] ##发送离线数据,说明状态变成waiting msg= msg_dict_off; msg=update_json(taskInfos_off,msg,offkeys=["msg_id","biz_id" ,"mod_id"] ) msg['results'][0]['original_url']=taskInfos_off['inSource'] msg['results'][0]['sign_url']=get_boradcast_address(taskInfos_off['outSource']) msg['status']='waiting' msg = json.dumps(msg, ensure_ascii=False) outStrList['success']= '%s start online task after kill offline tasks and back to kafka: pid:%d taskId:%s msgId:%s send:%s'%('-'*20,gpuProcess.pid,taskInfos_off['results_base_dir'], taskInfos_off['msg_id'],msg) outStrList['failure']='#######kafka ERROR when start online task after kill offline tasks and back to kafka' outStrList['Refailure']='##############kkafka ERROR when start online task after kill offline tasks and back to kafka' send_kafka(producer,kafka_par,msg,outStrList,fp_log ); cnt_off_1 = taskStatus['offLine'].qsize() outstr='%s before killing process, offtask cnt:%d ,after killing, offtask cnt:%d %s'%('-'*20 ,cnt_off_0,cnt_off_1,'*'*20) outstr=wrtiteLog(fp_log,outstr);print( outstr); gpuProcess=lauch_process(cuda,taskInfos['inSource'],taskInfos['outSource'],taskInfos['results_base_dir'],taskInfos['msg_id'],par['modelJson'],kafka_par) ###更新pidinfos,update pidInfos taskStatus['pidInfos'][gpuProcess.pid] = {'gpuProcess':gpuProcess,'type':'onLine','taskInfos':taskInfos} else: outstr='######No available GPUs for onLine####' outstr=wrtiteLog(fp_log,outstr);print( outstr); ##4-更新显卡信息 gpuStatus = getGPUInfos() ##5-考虑离线任务 if not taskStatus['offLine'].empty(): cudaArrange= arrange_offlineProcess(gpuStatus,taskStatus['pidInfos'],modelMemory=1500) outstr='###line342 IN OFF LINE TASKS available cudas:%s'%(cudaArrange) outstr=wrtiteLog(fp_log,outstr);print( outstr); for cuda in cudaArrange: if not taskStatus['offLine'].empty(): taskInfos = taskStatus['offLine'].get() gpuProcess=lauch_process(cuda,taskInfos['inSource'],taskInfos['outSource'],taskInfos['results_base_dir'],taskInfos['msg_id'],par['modelJson'],kafka_par) taskStatus['pidInfos'][gpuProcess.pid] = {'gpuProcess':gpuProcess,'type':'offLine','taskInfos':taskInfos} if get_whether_gpuProcess(): time0_sleep,printFlag = check_time_interval(time0_sleep,time_interval) if printFlag: timestr2=time.strftime("%Y-%m-%d %H:%M:%S ", time.localtime()) outstr= timestr2 + '*'*20 +'sleep '+'*'*20; outstr=wrtiteLog(fp_log,outstr);print( outstr); outstr_task=wrtiteLog(fp_log,outstr_task);print( outstr_task); time.sleep(timeSleep) print('########sleep 1s #####') print('########Program End#####') if __name__ == '__main__': par={}; ###topic0--在线,topic1--离线 #par['server']='212.129.223.66:9092';par['topic']=('thsw','thsw2','testReturn');par['group_id']='test'; #101.132.127.1:19092 ''' par['server']='101.132.127.1:19092 ';par['topic']=('alg-online-tasks','alg-offline-tasks','alg-task-results');par['group_id']='test'; par['kafka']='mintors/kafka' par['modelJson']='conf/model.json' ''' masterFile="conf/master.json" assert os.path.exists(masterFile) with open(masterFile,'r') as fp: data=json.load(fp) par=data['par'] print(par) detector(par)