@@ -0,0 +1,33 @@ | |||
# Hyperparameters for COCO training from scratch | |||
# python train.py --batch 40 --cfg yolov5m.yaml --weights '' --data coco.yaml --img 640 --epochs 300 | |||
# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials | |||
lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3) | |||
lrf: 0.2 # final OneCycleLR learning rate (lr0 * lrf) | |||
momentum: 0.937 # SGD momentum/Adam beta1 | |||
weight_decay: 0.0005 # optimizer weight decay 5e-4 | |||
warmup_epochs: 3.0 # warmup epochs (fractions ok) | |||
warmup_momentum: 0.8 # warmup initial momentum | |||
warmup_bias_lr: 0.1 # warmup initial bias lr | |||
box: 0.05 # box loss gain | |||
cls: 0.5 # cls loss gain | |||
cls_pw: 1.0 # cls BCELoss positive_weight | |||
obj: 1.0 # obj loss gain (scale with pixels) | |||
obj_pw: 1.0 # obj BCELoss positive_weight | |||
iou_t: 0.20 # IoU training threshold | |||
anchor_t: 4.0 # anchor-multiple threshold | |||
# anchors: 3 # anchors per output layer (0 to ignore) | |||
fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5) | |||
hsv_h: 0.015 # image HSV-Hue augmentation (fraction) | |||
hsv_s: 0.7 # image HSV-Saturation augmentation (fraction) | |||
hsv_v: 0.4 # image HSV-Value augmentation (fraction) | |||
degrees: 0.0 # image rotation (+/- deg) | |||
translate: 0.1 # image translation (+/- fraction) | |||
scale: 0.5 # image scale (+/- gain) | |||
shear: 0.0 # image shear (+/- deg) | |||
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001 | |||
flipud: 0.0 # image flip up-down (probability) | |||
fliplr: 0.5 # image flip left-right (probability) | |||
mosaic: 1.0 # image mosaic (probability) | |||
mixup: 0.0 # image mixup (probability) |
@@ -0,0 +1,386 @@ | |||
# YOLOv5 common modules | |||
import math | |||
from copy import copy | |||
from pathlib import Path | |||
import numpy as np | |||
import pandas as pd | |||
import requests | |||
import torch | |||
import torch.nn as nn | |||
from PIL import Image | |||
from torch.cuda import amp | |||
from utils.datasets import letterbox | |||
from utils.general import non_max_suppression, make_divisible, scale_coords, increment_path, xyxy2xywh | |||
from utils.plots import color_list, plot_one_box | |||
from utils.torch_utils import time_synchronized | |||
def autopad(k, p=None): # kernel, padding | |||
# Pad to 'same' | |||
if p is None: | |||
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad | |||
return p | |||
def DWConv(c1, c2, k=1, s=1, act=True): | |||
# Depthwise convolution | |||
return Conv(c1, c2, k, s, g=math.gcd(c1, c2), act=act) | |||
class Conv(nn.Module): | |||
# Standard convolution | |||
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups | |||
super(Conv, self).__init__() | |||
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False) | |||
self.bn = nn.BatchNorm2d(c2) | |||
self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity()) | |||
def forward(self, x): | |||
return self.act(self.bn(self.conv(x))) | |||
def fuseforward(self, x): | |||
return self.act(self.conv(x)) | |||
class TransformerLayer(nn.Module): | |||
# Transformer layer https://arxiv.org/abs/2010.11929 (LayerNorm layers removed for better performance) | |||
def __init__(self, c, num_heads): | |||
super().__init__() | |||
self.q = nn.Linear(c, c, bias=False) | |||
self.k = nn.Linear(c, c, bias=False) | |||
self.v = nn.Linear(c, c, bias=False) | |||
self.ma = nn.MultiheadAttention(embed_dim=c, num_heads=num_heads) | |||
self.fc1 = nn.Linear(c, c, bias=False) | |||
self.fc2 = nn.Linear(c, c, bias=False) | |||
def forward(self, x): | |||
x = self.ma(self.q(x), self.k(x), self.v(x))[0] + x | |||
x = self.fc2(self.fc1(x)) + x | |||
return x | |||
class TransformerBlock(nn.Module): | |||
# Vision Transformer https://arxiv.org/abs/2010.11929 | |||
def __init__(self, c1, c2, num_heads, num_layers): | |||
super().__init__() | |||
self.conv = None | |||
if c1 != c2: | |||
self.conv = Conv(c1, c2) | |||
self.linear = nn.Linear(c2, c2) # learnable position embedding | |||
self.tr = nn.Sequential(*[TransformerLayer(c2, num_heads) for _ in range(num_layers)]) | |||
self.c2 = c2 | |||
def forward(self, x): | |||
if self.conv is not None: | |||
x = self.conv(x) | |||
b, _, w, h = x.shape | |||
p = x.flatten(2) | |||
p = p.unsqueeze(0) | |||
p = p.transpose(0, 3) | |||
p = p.squeeze(3) | |||
e = self.linear(p) | |||
x = p + e | |||
x = self.tr(x) | |||
x = x.unsqueeze(3) | |||
x = x.transpose(0, 3) | |||
x = x.reshape(b, self.c2, w, h) | |||
return x | |||
class Bottleneck(nn.Module): | |||
# Standard bottleneck | |||
def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion | |||
super(Bottleneck, self).__init__() | |||
c_ = int(c2 * e) # hidden channels | |||
self.cv1 = Conv(c1, c_, 1, 1) | |||
self.cv2 = Conv(c_, c2, 3, 1, g=g) | |||
self.add = shortcut and c1 == c2 | |||
def forward(self, x): | |||
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x)) | |||
class BottleneckCSP(nn.Module): | |||
# CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks | |||
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion | |||
super(BottleneckCSP, self).__init__() | |||
c_ = int(c2 * e) # hidden channels | |||
self.cv1 = Conv(c1, c_, 1, 1) | |||
self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False) | |||
self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False) | |||
self.cv4 = Conv(2 * c_, c2, 1, 1) | |||
self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3) | |||
self.act = nn.LeakyReLU(0.1, inplace=True) | |||
self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)]) | |||
def forward(self, x): | |||
y1 = self.cv3(self.m(self.cv1(x))) | |||
y2 = self.cv2(x) | |||
return self.cv4(self.act(self.bn(torch.cat((y1, y2), dim=1)))) | |||
class C3(nn.Module): | |||
# CSP Bottleneck with 3 convolutions | |||
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion | |||
super(C3, self).__init__() | |||
c_ = int(c2 * e) # hidden channels | |||
self.cv1 = Conv(c1, c_, 1, 1) | |||
self.cv2 = Conv(c1, c_, 1, 1) | |||
self.cv3 = Conv(2 * c_, c2, 1) # act=FReLU(c2) | |||
self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)]) | |||
# self.m = nn.Sequential(*[CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)]) | |||
def forward(self, x): | |||
return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1)) | |||
class C3TR(C3): | |||
# C3 module with TransformerBlock() | |||
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): | |||
super().__init__(c1, c2, n, shortcut, g, e) | |||
c_ = int(c2 * e) | |||
self.m = TransformerBlock(c_, c_, 4, n) | |||
class SPP(nn.Module): | |||
# Spatial pyramid pooling layer used in YOLOv3-SPP | |||
def __init__(self, c1, c2, k=(5, 9, 13)): | |||
super(SPP, self).__init__() | |||
c_ = c1 // 2 # hidden channels | |||
self.cv1 = Conv(c1, c_, 1, 1) | |||
self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1) | |||
self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k]) | |||
def forward(self, x): | |||
x = self.cv1(x) | |||
return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1)) | |||
class Focus(nn.Module): | |||
# Focus wh information into c-space | |||
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups | |||
super(Focus, self).__init__() | |||
self.conv = Conv(c1 * 4, c2, k, s, p, g, act) | |||
# self.contract = Contract(gain=2) | |||
def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2) | |||
return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1)) | |||
# return self.conv(self.contract(x)) | |||
class Contract(nn.Module): | |||
# Contract width-height into channels, i.e. x(1,64,80,80) to x(1,256,40,40) | |||
def __init__(self, gain=2): | |||
super().__init__() | |||
self.gain = gain | |||
def forward(self, x): | |||
N, C, H, W = x.size() # assert (H / s == 0) and (W / s == 0), 'Indivisible gain' | |||
s = self.gain | |||
x = x.view(N, C, H // s, s, W // s, s) # x(1,64,40,2,40,2) | |||
x = x.permute(0, 3, 5, 1, 2, 4).contiguous() # x(1,2,2,64,40,40) | |||
return x.view(N, C * s * s, H // s, W // s) # x(1,256,40,40) | |||
class Expand(nn.Module): | |||
# Expand channels into width-height, i.e. x(1,64,80,80) to x(1,16,160,160) | |||
def __init__(self, gain=2): | |||
super().__init__() | |||
self.gain = gain | |||
def forward(self, x): | |||
N, C, H, W = x.size() # assert C / s ** 2 == 0, 'Indivisible gain' | |||
s = self.gain | |||
x = x.view(N, s, s, C // s ** 2, H, W) # x(1,2,2,16,80,80) | |||
x = x.permute(0, 3, 4, 1, 5, 2).contiguous() # x(1,16,80,2,80,2) | |||
return x.view(N, C // s ** 2, H * s, W * s) # x(1,16,160,160) | |||
class Concat(nn.Module): | |||
# Concatenate a list of tensors along dimension | |||
def __init__(self, dimension=1): | |||
super(Concat, self).__init__() | |||
self.d = dimension | |||
def forward(self, x): | |||
return torch.cat(x, self.d) | |||
class NMS(nn.Module): | |||
# Non-Maximum Suppression (NMS) module | |||
conf = 0.25 # confidence threshold | |||
iou = 0.45 # IoU threshold | |||
classes = None # (optional list) filter by class | |||
def __init__(self): | |||
super(NMS, self).__init__() | |||
def forward(self, x): | |||
return non_max_suppression(x[0], conf_thres=self.conf, iou_thres=self.iou, classes=self.classes) | |||
class autoShape(nn.Module): | |||
# input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS | |||
conf = 0.25 # NMS confidence threshold | |||
iou = 0.45 # NMS IoU threshold | |||
classes = None # (optional list) filter by class | |||
def __init__(self, model): | |||
super(autoShape, self).__init__() | |||
self.model = model.eval() | |||
def autoshape(self): | |||
print('autoShape already enabled, skipping... ') # model already converted to model.autoshape() | |||
return self | |||
@torch.no_grad() | |||
def forward(self, imgs, size=640, augment=False, profile=False): | |||
# Inference from various sources. For height=640, width=1280, RGB images example inputs are: | |||
# filename: imgs = 'data/samples/zidane.jpg' | |||
# URI: = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/zidane.jpg' | |||
# OpenCV: = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(640,1280,3) | |||
# PIL: = Image.open('image.jpg') # HWC x(640,1280,3) | |||
# numpy: = np.zeros((640,1280,3)) # HWC | |||
# torch: = torch.zeros(16,3,320,640) # BCHW (scaled to size=640, 0-1 values) | |||
# multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images | |||
t = [time_synchronized()] | |||
p = next(self.model.parameters()) # for device and type | |||
if isinstance(imgs, torch.Tensor): # torch | |||
with amp.autocast(enabled=p.device.type != 'cpu'): | |||
return self.model(imgs.to(p.device).type_as(p), augment, profile) # inference | |||
# Pre-process | |||
n, imgs = (len(imgs), imgs) if isinstance(imgs, list) else (1, [imgs]) # number of images, list of images | |||
shape0, shape1, files = [], [], [] # image and inference shapes, filenames | |||
for i, im in enumerate(imgs): | |||
f = f'image{i}' # filename | |||
if isinstance(im, str): # filename or uri | |||
im, f = np.asarray(Image.open(requests.get(im, stream=True).raw if im.startswith('http') else im)), im | |||
elif isinstance(im, Image.Image): # PIL Image | |||
im, f = np.asarray(im), getattr(im, 'filename', f) or f | |||
files.append(Path(f).with_suffix('.jpg').name) | |||
if im.shape[0] < 5: # image in CHW | |||
im = im.transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1) | |||
im = im[:, :, :3] if im.ndim == 3 else np.tile(im[:, :, None], 3) # enforce 3ch input | |||
s = im.shape[:2] # HWC | |||
shape0.append(s) # image shape | |||
g = (size / max(s)) # gain | |||
shape1.append([y * g for y in s]) | |||
imgs[i] = im # update | |||
shape1 = [make_divisible(x, int(self.stride.max())) for x in np.stack(shape1, 0).max(0)] # inference shape | |||
x = [letterbox(im, new_shape=shape1, auto=False)[0] for im in imgs] # pad | |||
x = np.stack(x, 0) if n > 1 else x[0][None] # stack | |||
x = np.ascontiguousarray(x.transpose((0, 3, 1, 2))) # BHWC to BCHW | |||
x = torch.from_numpy(x).to(p.device).type_as(p) / 255. # uint8 to fp16/32 | |||
t.append(time_synchronized()) | |||
with amp.autocast(enabled=p.device.type != 'cpu'): | |||
# Inference | |||
y = self.model(x, augment, profile)[0] # forward | |||
t.append(time_synchronized()) | |||
# Post-process | |||
y = non_max_suppression(y, conf_thres=self.conf, iou_thres=self.iou, classes=self.classes) # NMS | |||
for i in range(n): | |||
scale_coords(shape1, y[i][:, :4], shape0[i]) | |||
t.append(time_synchronized()) | |||
return Detections(imgs, y, files, t, self.names, x.shape) | |||
class Detections: | |||
# detections class for YOLOv5 inference results | |||
def __init__(self, imgs, pred, files, times=None, names=None, shape=None): | |||
super(Detections, self).__init__() | |||
d = pred[0].device # device | |||
gn = [torch.tensor([*[im.shape[i] for i in [1, 0, 1, 0]], 1., 1.], device=d) for im in imgs] # normalizations | |||
self.imgs = imgs # list of images as numpy arrays | |||
self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls) | |||
self.names = names # class names | |||
self.files = files # image filenames | |||
self.xyxy = pred # xyxy pixels | |||
self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels | |||
self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized | |||
self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized | |||
self.n = len(self.pred) # number of images (batch size) | |||
self.t = tuple((times[i + 1] - times[i]) * 1000 / self.n for i in range(3)) # timestamps (ms) | |||
self.s = shape # inference BCHW shape | |||
def display(self, pprint=False, show=False, save=False, render=False, save_dir=''): | |||
colors = color_list() | |||
for i, (img, pred) in enumerate(zip(self.imgs, self.pred)): | |||
str = f'image {i + 1}/{len(self.pred)}: {img.shape[0]}x{img.shape[1]} ' | |||
if pred is not None: | |||
for c in pred[:, -1].unique(): | |||
n = (pred[:, -1] == c).sum() # detections per class | |||
str += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " # add to string | |||
if show or save or render: | |||
for *box, conf, cls in pred: # xyxy, confidence, class | |||
label = f'{self.names[int(cls)]} {conf:.2f}' | |||
plot_one_box(box, img, label=label, color=colors[int(cls) % 10]) | |||
img = Image.fromarray(img.astype(np.uint8)) if isinstance(img, np.ndarray) else img # from np | |||
if pprint: | |||
print(str.rstrip(', ')) | |||
if show: | |||
img.show(self.files[i]) # show | |||
if save: | |||
f = self.files[i] | |||
img.save(Path(save_dir) / f) # save | |||
print(f"{'Saved' * (i == 0)} {f}", end=',' if i < self.n - 1 else f' to {save_dir}\n') | |||
if render: | |||
self.imgs[i] = np.asarray(img) | |||
def print(self): | |||
self.display(pprint=True) # print results | |||
print(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {tuple(self.s)}' % self.t) | |||
def show(self): | |||
self.display(show=True) # show results | |||
def save(self, save_dir='runs/hub/exp'): | |||
save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/hub/exp') # increment save_dir | |||
Path(save_dir).mkdir(parents=True, exist_ok=True) | |||
self.display(save=True, save_dir=save_dir) # save results | |||
def render(self): | |||
self.display(render=True) # render results | |||
return self.imgs | |||
def pandas(self): | |||
# return detections as pandas DataFrames, i.e. print(results.pandas().xyxy[0]) | |||
new = copy(self) # return copy | |||
ca = 'xmin', 'ymin', 'xmax', 'ymax', 'confidence', 'class', 'name' # xyxy columns | |||
cb = 'xcenter', 'ycenter', 'width', 'height', 'confidence', 'class', 'name' # xywh columns | |||
for k, c in zip(['xyxy', 'xyxyn', 'xywh', 'xywhn'], [ca, ca, cb, cb]): | |||
a = [[x[:5] + [int(x[5]), self.names[int(x[5])]] for x in x.tolist()] for x in getattr(self, k)] # update | |||
setattr(new, k, [pd.DataFrame(x, columns=c) for x in a]) | |||
return new | |||
def tolist(self): | |||
# return a list of Detections objects, i.e. 'for result in results.tolist():' | |||
x = [Detections([self.imgs[i]], [self.pred[i]], self.names, self.s) for i in range(self.n)] | |||
for d in x: | |||
for k in ['imgs', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']: | |||
setattr(d, k, getattr(d, k)[0]) # pop out of list | |||
return x | |||
def __len__(self): | |||
return self.n | |||
class Classify(nn.Module): | |||
# Classification head, i.e. x(b,c1,20,20) to x(b,c2) | |||
def __init__(self, c1, c2, k=1, s=1, p=None, g=1): # ch_in, ch_out, kernel, stride, padding, groups | |||
super(Classify, self).__init__() | |||
self.aap = nn.AdaptiveAvgPool2d(1) # to x(b,c1,1,1) | |||
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g) # to x(b,c2,1,1) | |||
self.flat = nn.Flatten() | |||
def forward(self, x): | |||
z = torch.cat([self.aap(y) for y in (x if isinstance(x, list) else [x])], 1) # cat if list | |||
return self.flat(self.conv(z)) # flatten to x(b,c2) |
@@ -0,0 +1,134 @@ | |||
# YOLOv5 experimental modules | |||
import numpy as np | |||
import torch | |||
import torch.nn as nn | |||
from models.common import Conv, DWConv | |||
from utils.google_utils import attempt_download | |||
class CrossConv(nn.Module): | |||
# Cross Convolution Downsample | |||
def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False): | |||
# ch_in, ch_out, kernel, stride, groups, expansion, shortcut | |||
super(CrossConv, self).__init__() | |||
c_ = int(c2 * e) # hidden channels | |||
self.cv1 = Conv(c1, c_, (1, k), (1, s)) | |||
self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g) | |||
self.add = shortcut and c1 == c2 | |||
def forward(self, x): | |||
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x)) | |||
class Sum(nn.Module): | |||
# Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070 | |||
def __init__(self, n, weight=False): # n: number of inputs | |||
super(Sum, self).__init__() | |||
self.weight = weight # apply weights boolean | |||
self.iter = range(n - 1) # iter object | |||
if weight: | |||
self.w = nn.Parameter(-torch.arange(1., n) / 2, requires_grad=True) # layer weights | |||
def forward(self, x): | |||
y = x[0] # no weight | |||
if self.weight: | |||
w = torch.sigmoid(self.w) * 2 | |||
for i in self.iter: | |||
y = y + x[i + 1] * w[i] | |||
else: | |||
for i in self.iter: | |||
y = y + x[i + 1] | |||
return y | |||
class GhostConv(nn.Module): | |||
# Ghost Convolution https://github.com/huawei-noah/ghostnet | |||
def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups | |||
super(GhostConv, self).__init__() | |||
c_ = c2 // 2 # hidden channels | |||
self.cv1 = Conv(c1, c_, k, s, None, g, act) | |||
self.cv2 = Conv(c_, c_, 5, 1, None, c_, act) | |||
def forward(self, x): | |||
y = self.cv1(x) | |||
return torch.cat([y, self.cv2(y)], 1) | |||
class GhostBottleneck(nn.Module): | |||
# Ghost Bottleneck https://github.com/huawei-noah/ghostnet | |||
def __init__(self, c1, c2, k=3, s=1): # ch_in, ch_out, kernel, stride | |||
super(GhostBottleneck, self).__init__() | |||
c_ = c2 // 2 | |||
self.conv = nn.Sequential(GhostConv(c1, c_, 1, 1), # pw | |||
DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw | |||
GhostConv(c_, c2, 1, 1, act=False)) # pw-linear | |||
self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False), | |||
Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity() | |||
def forward(self, x): | |||
return self.conv(x) + self.shortcut(x) | |||
class MixConv2d(nn.Module): | |||
# Mixed Depthwise Conv https://arxiv.org/abs/1907.09595 | |||
def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True): | |||
super(MixConv2d, self).__init__() | |||
groups = len(k) | |||
if equal_ch: # equal c_ per group | |||
i = torch.linspace(0, groups - 1E-6, c2).floor() # c2 indices | |||
c_ = [(i == g).sum() for g in range(groups)] # intermediate channels | |||
else: # equal weight.numel() per group | |||
b = [c2] + [0] * groups | |||
a = np.eye(groups + 1, groups, k=-1) | |||
a -= np.roll(a, 1, axis=1) | |||
a *= np.array(k) ** 2 | |||
a[0] = 1 | |||
c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b | |||
self.m = nn.ModuleList([nn.Conv2d(c1, int(c_[g]), k[g], s, k[g] // 2, bias=False) for g in range(groups)]) | |||
self.bn = nn.BatchNorm2d(c2) | |||
self.act = nn.LeakyReLU(0.1, inplace=True) | |||
def forward(self, x): | |||
return x + self.act(self.bn(torch.cat([m(x) for m in self.m], 1))) | |||
class Ensemble(nn.ModuleList): | |||
# Ensemble of models | |||
def __init__(self): | |||
super(Ensemble, self).__init__() | |||
def forward(self, x, augment=False): | |||
y = [] | |||
for module in self: | |||
y.append(module(x, augment)[0]) | |||
# y = torch.stack(y).max(0)[0] # max ensemble | |||
# y = torch.stack(y).mean(0) # mean ensemble | |||
y = torch.cat(y, 1) # nms ensemble | |||
return y, None # inference, train output | |||
def attempt_load(weights, map_location=None): | |||
# Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a | |||
model = Ensemble() | |||
for w in weights if isinstance(weights, list) else [weights]: | |||
attempt_download(w) | |||
ckpt = torch.load(w, map_location=map_location) # load | |||
model.append(ckpt['ema' if ckpt.get('ema') else 'model'].float().fuse().eval()) # FP32 model | |||
# Compatibility updates | |||
for m in model.modules(): | |||
if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]: | |||
m.inplace = True # pytorch 1.7.0 compatibility | |||
elif type(m) is Conv: | |||
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility | |||
if len(model) == 1: | |||
return model[-1] # return model | |||
else: | |||
print('Ensemble created with %s\n' % weights) | |||
for k in ['names', 'stride']: | |||
setattr(model, k, getattr(model[-1], k)) | |||
return model # return ensemble |
@@ -0,0 +1,104 @@ | |||
"""Exports a YOLOv5 *.pt model to ONNX and TorchScript formats | |||
Usage: | |||
$ export PYTHONPATH="$PWD" && python models/export.py --weights ./weights/yolov5s.pt --img 640 --batch 1 | |||
""" | |||
import argparse | |||
import sys | |||
import time | |||
sys.path.append('./') # to run '$ python *.py' files in subdirectories | |||
import torch | |||
import torch.nn as nn | |||
import models | |||
from models.experimental import attempt_load | |||
from utils.activations import Hardswish, SiLU | |||
from utils.general import set_logging, check_img_size | |||
from utils.torch_utils import select_device | |||
if __name__ == '__main__': | |||
parser = argparse.ArgumentParser() | |||
parser.add_argument('--weights', type=str, default='./yolov5s.pt', help='weights path') # from yolov5/models/ | |||
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size') # height, width | |||
parser.add_argument('--batch-size', type=int, default=1, help='batch size') | |||
parser.add_argument('--dynamic', action='store_true', help='dynamic ONNX axes') | |||
parser.add_argument('--grid', action='store_true', help='export Detect() layer grid') | |||
parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') | |||
opt = parser.parse_args() | |||
opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand | |||
print(opt) | |||
set_logging() | |||
t = time.time() | |||
# Load PyTorch model | |||
device = select_device(opt.device) | |||
model = attempt_load(opt.weights, map_location=device) # load FP32 model | |||
labels = model.names | |||
# Checks | |||
gs = int(max(model.stride)) # grid size (max stride) | |||
opt.img_size = [check_img_size(x, gs) for x in opt.img_size] # verify img_size are gs-multiples | |||
# Input | |||
img = torch.zeros(opt.batch_size, 3, *opt.img_size).to(device) # image size(1,3,320,192) iDetection | |||
# Update model | |||
for k, m in model.named_modules(): | |||
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility | |||
if isinstance(m, models.common.Conv): # assign export-friendly activations | |||
if isinstance(m.act, nn.Hardswish): | |||
m.act = Hardswish() | |||
elif isinstance(m.act, nn.SiLU): | |||
m.act = SiLU() | |||
# elif isinstance(m, models.yolo.Detect): | |||
# m.forward = m.forward_export # assign forward (optional) | |||
model.model[-1].export = not opt.grid # set Detect() layer grid export | |||
y = model(img) # dry run | |||
# TorchScript export | |||
try: | |||
print('\nStarting TorchScript export with torch %s...' % torch.__version__) | |||
f = opt.weights.replace('.pt', '.torchscript.pt') # filename | |||
ts = torch.jit.trace(model, img) | |||
ts.save(f) | |||
print('TorchScript export success, saved as %s' % f) | |||
except Exception as e: | |||
print('TorchScript export failure: %s' % e) | |||
# ONNX export | |||
try: | |||
import onnx | |||
print('\nStarting ONNX export with onnx %s...' % onnx.__version__) | |||
f = opt.weights.replace('.pt', '.onnx') # filename | |||
torch.onnx.export(model, img, f, verbose=False, opset_version=12, input_names=['images'], | |||
output_names=['classes', 'boxes'] if y is None else ['output'], | |||
dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'}, # size(1,3,640,640) | |||
'output': {0: 'batch', 2: 'y', 3: 'x'}} if opt.dynamic else None) | |||
# Checks | |||
onnx_model = onnx.load(f) # load onnx model | |||
onnx.checker.check_model(onnx_model) # check onnx model | |||
# print(onnx.helper.printable_graph(onnx_model.graph)) # print a human readable model | |||
print('ONNX export success, saved as %s' % f) | |||
except Exception as e: | |||
print('ONNX export failure: %s' % e) | |||
# CoreML export | |||
try: | |||
import coremltools as ct | |||
print('\nStarting CoreML export with coremltools %s...' % ct.__version__) | |||
# convert model from torchscript and apply pixel scaling as per detect.py | |||
model = ct.convert(ts, inputs=[ct.ImageType(name='image', shape=img.shape, scale=1 / 255.0, bias=[0, 0, 0])]) | |||
f = opt.weights.replace('.pt', '.mlmodel') # filename | |||
model.save(f) | |||
print('CoreML export success, saved as %s' % f) | |||
except Exception as e: | |||
print('CoreML export failure: %s' % e) | |||
# Finish | |||
print('\nExport complete (%.2fs). Visualize with https://github.com/lutzroeder/netron.' % (time.time() - t)) |
@@ -0,0 +1,58 @@ | |||
# Default YOLOv5 anchors for COCO data | |||
# P5 ------------------------------------------------------------------------------------------------------------------- | |||
# P5-640: | |||
anchors_p5_640: | |||
- [ 10,13, 16,30, 33,23 ] # P3/8 | |||
- [ 30,61, 62,45, 59,119 ] # P4/16 | |||
- [ 116,90, 156,198, 373,326 ] # P5/32 | |||
# P6 ------------------------------------------------------------------------------------------------------------------- | |||
# P6-640: thr=0.25: 0.9964 BPR, 5.54 anchors past thr, n=12, img_size=640, metric_all=0.281/0.716-mean/best, past_thr=0.469-mean: 9,11, 21,19, 17,41, 43,32, 39,70, 86,64, 65,131, 134,130, 120,265, 282,180, 247,354, 512,387 | |||
anchors_p6_640: | |||
- [ 9,11, 21,19, 17,41 ] # P3/8 | |||
- [ 43,32, 39,70, 86,64 ] # P4/16 | |||
- [ 65,131, 134,130, 120,265 ] # P5/32 | |||
- [ 282,180, 247,354, 512,387 ] # P6/64 | |||
# P6-1280: thr=0.25: 0.9950 BPR, 5.55 anchors past thr, n=12, img_size=1280, metric_all=0.281/0.714-mean/best, past_thr=0.468-mean: 19,27, 44,40, 38,94, 96,68, 86,152, 180,137, 140,301, 303,264, 238,542, 436,615, 739,380, 925,792 | |||
anchors_p6_1280: | |||
- [ 19,27, 44,40, 38,94 ] # P3/8 | |||
- [ 96,68, 86,152, 180,137 ] # P4/16 | |||
- [ 140,301, 303,264, 238,542 ] # P5/32 | |||
- [ 436,615, 739,380, 925,792 ] # P6/64 | |||
# P6-1920: thr=0.25: 0.9950 BPR, 5.55 anchors past thr, n=12, img_size=1920, metric_all=0.281/0.714-mean/best, past_thr=0.468-mean: 28,41, 67,59, 57,141, 144,103, 129,227, 270,205, 209,452, 455,396, 358,812, 653,922, 1109,570, 1387,1187 | |||
anchors_p6_1920: | |||
- [ 28,41, 67,59, 57,141 ] # P3/8 | |||
- [ 144,103, 129,227, 270,205 ] # P4/16 | |||
- [ 209,452, 455,396, 358,812 ] # P5/32 | |||
- [ 653,922, 1109,570, 1387,1187 ] # P6/64 | |||
# P7 ------------------------------------------------------------------------------------------------------------------- | |||
# P7-640: thr=0.25: 0.9962 BPR, 6.76 anchors past thr, n=15, img_size=640, metric_all=0.275/0.733-mean/best, past_thr=0.466-mean: 11,11, 13,30, 29,20, 30,46, 61,38, 39,92, 78,80, 146,66, 79,163, 149,150, 321,143, 157,303, 257,402, 359,290, 524,372 | |||
anchors_p7_640: | |||
- [ 11,11, 13,30, 29,20 ] # P3/8 | |||
- [ 30,46, 61,38, 39,92 ] # P4/16 | |||
- [ 78,80, 146,66, 79,163 ] # P5/32 | |||
- [ 149,150, 321,143, 157,303 ] # P6/64 | |||
- [ 257,402, 359,290, 524,372 ] # P7/128 | |||
# P7-1280: thr=0.25: 0.9968 BPR, 6.71 anchors past thr, n=15, img_size=1280, metric_all=0.273/0.732-mean/best, past_thr=0.463-mean: 19,22, 54,36, 32,77, 70,83, 138,71, 75,173, 165,159, 148,334, 375,151, 334,317, 251,626, 499,474, 750,326, 534,814, 1079,818 | |||
anchors_p7_1280: | |||
- [ 19,22, 54,36, 32,77 ] # P3/8 | |||
- [ 70,83, 138,71, 75,173 ] # P4/16 | |||
- [ 165,159, 148,334, 375,151 ] # P5/32 | |||
- [ 334,317, 251,626, 499,474 ] # P6/64 | |||
- [ 750,326, 534,814, 1079,818 ] # P7/128 | |||
# P7-1920: thr=0.25: 0.9968 BPR, 6.71 anchors past thr, n=15, img_size=1920, metric_all=0.273/0.732-mean/best, past_thr=0.463-mean: 29,34, 81,55, 47,115, 105,124, 207,107, 113,259, 247,238, 222,500, 563,227, 501,476, 376,939, 749,711, 1126,489, 801,1222, 1618,1227 | |||
anchors_p7_1920: | |||
- [ 29,34, 81,55, 47,115 ] # P3/8 | |||
- [ 105,124, 207,107, 113,259 ] # P4/16 | |||
- [ 247,238, 222,500, 563,227 ] # P5/32 | |||
- [ 501,476, 376,939, 749,711 ] # P6/64 | |||
- [ 1126,489, 801,1222, 1618,1227 ] # P7/128 |
@@ -0,0 +1,51 @@ | |||
# parameters | |||
nc: 80 # number of classes | |||
depth_multiple: 1.0 # model depth multiple | |||
width_multiple: 1.0 # layer channel multiple | |||
# anchors | |||
anchors: | |||
- [10,13, 16,30, 33,23] # P3/8 | |||
- [30,61, 62,45, 59,119] # P4/16 | |||
- [116,90, 156,198, 373,326] # P5/32 | |||
# darknet53 backbone | |||
backbone: | |||
# [from, number, module, args] | |||
[[-1, 1, Conv, [32, 3, 1]], # 0 | |||
[-1, 1, Conv, [64, 3, 2]], # 1-P1/2 | |||
[-1, 1, Bottleneck, [64]], | |||
[-1, 1, Conv, [128, 3, 2]], # 3-P2/4 | |||
[-1, 2, Bottleneck, [128]], | |||
[-1, 1, Conv, [256, 3, 2]], # 5-P3/8 | |||
[-1, 8, Bottleneck, [256]], | |||
[-1, 1, Conv, [512, 3, 2]], # 7-P4/16 | |||
[-1, 8, Bottleneck, [512]], | |||
[-1, 1, Conv, [1024, 3, 2]], # 9-P5/32 | |||
[-1, 4, Bottleneck, [1024]], # 10 | |||
] | |||
# YOLOv3-SPP head | |||
head: | |||
[[-1, 1, Bottleneck, [1024, False]], | |||
[-1, 1, SPP, [512, [5, 9, 13]]], | |||
[-1, 1, Conv, [1024, 3, 1]], | |||
[-1, 1, Conv, [512, 1, 1]], | |||
[-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large) | |||
[-2, 1, Conv, [256, 1, 1]], | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | |||
[[-1, 8], 1, Concat, [1]], # cat backbone P4 | |||
[-1, 1, Bottleneck, [512, False]], | |||
[-1, 1, Bottleneck, [512, False]], | |||
[-1, 1, Conv, [256, 1, 1]], | |||
[-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium) | |||
[-2, 1, Conv, [128, 1, 1]], | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | |||
[[-1, 6], 1, Concat, [1]], # cat backbone P3 | |||
[-1, 1, Bottleneck, [256, False]], | |||
[-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small) | |||
[[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) | |||
] |
@@ -0,0 +1,41 @@ | |||
# parameters | |||
nc: 80 # number of classes | |||
depth_multiple: 1.0 # model depth multiple | |||
width_multiple: 1.0 # layer channel multiple | |||
# anchors | |||
anchors: | |||
- [10,14, 23,27, 37,58] # P4/16 | |||
- [81,82, 135,169, 344,319] # P5/32 | |||
# YOLOv3-tiny backbone | |||
backbone: | |||
# [from, number, module, args] | |||
[[-1, 1, Conv, [16, 3, 1]], # 0 | |||
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 1-P1/2 | |||
[-1, 1, Conv, [32, 3, 1]], | |||
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 3-P2/4 | |||
[-1, 1, Conv, [64, 3, 1]], | |||
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 5-P3/8 | |||
[-1, 1, Conv, [128, 3, 1]], | |||
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 7-P4/16 | |||
[-1, 1, Conv, [256, 3, 1]], | |||
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 9-P5/32 | |||
[-1, 1, Conv, [512, 3, 1]], | |||
[-1, 1, nn.ZeroPad2d, [[0, 1, 0, 1]]], # 11 | |||
[-1, 1, nn.MaxPool2d, [2, 1, 0]], # 12 | |||
] | |||
# YOLOv3-tiny head | |||
head: | |||
[[-1, 1, Conv, [1024, 3, 1]], | |||
[-1, 1, Conv, [256, 1, 1]], | |||
[-1, 1, Conv, [512, 3, 1]], # 15 (P5/32-large) | |||
[-2, 1, Conv, [128, 1, 1]], | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | |||
[[-1, 8], 1, Concat, [1]], # cat backbone P4 | |||
[-1, 1, Conv, [256, 3, 1]], # 19 (P4/16-medium) | |||
[[19, 15], 1, Detect, [nc, anchors]], # Detect(P4, P5) | |||
] |
@@ -0,0 +1,51 @@ | |||
# parameters | |||
nc: 80 # number of classes | |||
depth_multiple: 1.0 # model depth multiple | |||
width_multiple: 1.0 # layer channel multiple | |||
# anchors | |||
anchors: | |||
- [10,13, 16,30, 33,23] # P3/8 | |||
- [30,61, 62,45, 59,119] # P4/16 | |||
- [116,90, 156,198, 373,326] # P5/32 | |||
# darknet53 backbone | |||
backbone: | |||
# [from, number, module, args] | |||
[[-1, 1, Conv, [32, 3, 1]], # 0 | |||
[-1, 1, Conv, [64, 3, 2]], # 1-P1/2 | |||
[-1, 1, Bottleneck, [64]], | |||
[-1, 1, Conv, [128, 3, 2]], # 3-P2/4 | |||
[-1, 2, Bottleneck, [128]], | |||
[-1, 1, Conv, [256, 3, 2]], # 5-P3/8 | |||
[-1, 8, Bottleneck, [256]], | |||
[-1, 1, Conv, [512, 3, 2]], # 7-P4/16 | |||
[-1, 8, Bottleneck, [512]], | |||
[-1, 1, Conv, [1024, 3, 2]], # 9-P5/32 | |||
[-1, 4, Bottleneck, [1024]], # 10 | |||
] | |||
# YOLOv3 head | |||
head: | |||
[[-1, 1, Bottleneck, [1024, False]], | |||
[-1, 1, Conv, [512, [1, 1]]], | |||
[-1, 1, Conv, [1024, 3, 1]], | |||
[-1, 1, Conv, [512, 1, 1]], | |||
[-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large) | |||
[-2, 1, Conv, [256, 1, 1]], | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | |||
[[-1, 8], 1, Concat, [1]], # cat backbone P4 | |||
[-1, 1, Bottleneck, [512, False]], | |||
[-1, 1, Bottleneck, [512, False]], | |||
[-1, 1, Conv, [256, 1, 1]], | |||
[-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium) | |||
[-2, 1, Conv, [128, 1, 1]], | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | |||
[[-1, 6], 1, Concat, [1]], # cat backbone P3 | |||
[-1, 1, Bottleneck, [256, False]], | |||
[-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small) | |||
[[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) | |||
] |
@@ -0,0 +1,42 @@ | |||
# parameters | |||
nc: 80 # number of classes | |||
depth_multiple: 1.0 # model depth multiple | |||
width_multiple: 1.0 # layer channel multiple | |||
# anchors | |||
anchors: | |||
- [10,13, 16,30, 33,23] # P3/8 | |||
- [30,61, 62,45, 59,119] # P4/16 | |||
- [116,90, 156,198, 373,326] # P5/32 | |||
# YOLOv5 backbone | |||
backbone: | |||
# [from, number, module, args] | |||
[[-1, 1, Focus, [64, 3]], # 0-P1/2 | |||
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4 | |||
[-1, 3, Bottleneck, [128]], | |||
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8 | |||
[-1, 9, BottleneckCSP, [256]], | |||
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16 | |||
[-1, 9, BottleneckCSP, [512]], | |||
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 | |||
[-1, 1, SPP, [1024, [5, 9, 13]]], | |||
[-1, 6, BottleneckCSP, [1024]], # 9 | |||
] | |||
# YOLOv5 FPN head | |||
head: | |||
[[-1, 3, BottleneckCSP, [1024, False]], # 10 (P5/32-large) | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | |||
[[-1, 6], 1, Concat, [1]], # cat backbone P4 | |||
[-1, 1, Conv, [512, 1, 1]], | |||
[-1, 3, BottleneckCSP, [512, False]], # 14 (P4/16-medium) | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | |||
[[-1, 4], 1, Concat, [1]], # cat backbone P3 | |||
[-1, 1, Conv, [256, 1, 1]], | |||
[-1, 3, BottleneckCSP, [256, False]], # 18 (P3/8-small) | |||
[[18, 14, 10], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) | |||
] |
@@ -0,0 +1,54 @@ | |||
# parameters | |||
nc: 80 # number of classes | |||
depth_multiple: 1.0 # model depth multiple | |||
width_multiple: 1.0 # layer channel multiple | |||
# anchors | |||
anchors: 3 | |||
# YOLOv5 backbone | |||
backbone: | |||
# [from, number, module, args] | |||
[ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2 | |||
[ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4 | |||
[ -1, 3, C3, [ 128 ] ], | |||
[ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8 | |||
[ -1, 9, C3, [ 256 ] ], | |||
[ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16 | |||
[ -1, 9, C3, [ 512 ] ], | |||
[ -1, 1, Conv, [ 1024, 3, 2 ] ], # 7-P5/32 | |||
[ -1, 1, SPP, [ 1024, [ 5, 9, 13 ] ] ], | |||
[ -1, 3, C3, [ 1024, False ] ], # 9 | |||
] | |||
# YOLOv5 head | |||
head: | |||
[ [ -1, 1, Conv, [ 512, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4 | |||
[ -1, 3, C3, [ 512, False ] ], # 13 | |||
[ -1, 1, Conv, [ 256, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3 | |||
[ -1, 3, C3, [ 256, False ] ], # 17 (P3/8-small) | |||
[ -1, 1, Conv, [ 128, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 2 ], 1, Concat, [ 1 ] ], # cat backbone P2 | |||
[ -1, 1, C3, [ 128, False ] ], # 21 (P2/4-xsmall) | |||
[ -1, 1, Conv, [ 128, 3, 2 ] ], | |||
[ [ -1, 18 ], 1, Concat, [ 1 ] ], # cat head P3 | |||
[ -1, 3, C3, [ 256, False ] ], # 24 (P3/8-small) | |||
[ -1, 1, Conv, [ 256, 3, 2 ] ], | |||
[ [ -1, 14 ], 1, Concat, [ 1 ] ], # cat head P4 | |||
[ -1, 3, C3, [ 512, False ] ], # 27 (P4/16-medium) | |||
[ -1, 1, Conv, [ 512, 3, 2 ] ], | |||
[ [ -1, 10 ], 1, Concat, [ 1 ] ], # cat head P5 | |||
[ -1, 3, C3, [ 1024, False ] ], # 30 (P5/32-large) | |||
[ [ 24, 27, 30 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5) | |||
] |
@@ -0,0 +1,56 @@ | |||
# parameters | |||
nc: 80 # number of classes | |||
depth_multiple: 1.0 # model depth multiple | |||
width_multiple: 1.0 # layer channel multiple | |||
# anchors | |||
anchors: 3 | |||
# YOLOv5 backbone | |||
backbone: | |||
# [from, number, module, args] | |||
[ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2 | |||
[ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4 | |||
[ -1, 3, C3, [ 128 ] ], | |||
[ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8 | |||
[ -1, 9, C3, [ 256 ] ], | |||
[ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16 | |||
[ -1, 9, C3, [ 512 ] ], | |||
[ -1, 1, Conv, [ 768, 3, 2 ] ], # 7-P5/32 | |||
[ -1, 3, C3, [ 768 ] ], | |||
[ -1, 1, Conv, [ 1024, 3, 2 ] ], # 9-P6/64 | |||
[ -1, 1, SPP, [ 1024, [ 3, 5, 7 ] ] ], | |||
[ -1, 3, C3, [ 1024, False ] ], # 11 | |||
] | |||
# YOLOv5 head | |||
head: | |||
[ [ -1, 1, Conv, [ 768, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 8 ], 1, Concat, [ 1 ] ], # cat backbone P5 | |||
[ -1, 3, C3, [ 768, False ] ], # 15 | |||
[ -1, 1, Conv, [ 512, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4 | |||
[ -1, 3, C3, [ 512, False ] ], # 19 | |||
[ -1, 1, Conv, [ 256, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3 | |||
[ -1, 3, C3, [ 256, False ] ], # 23 (P3/8-small) | |||
[ -1, 1, Conv, [ 256, 3, 2 ] ], | |||
[ [ -1, 20 ], 1, Concat, [ 1 ] ], # cat head P4 | |||
[ -1, 3, C3, [ 512, False ] ], # 26 (P4/16-medium) | |||
[ -1, 1, Conv, [ 512, 3, 2 ] ], | |||
[ [ -1, 16 ], 1, Concat, [ 1 ] ], # cat head P5 | |||
[ -1, 3, C3, [ 768, False ] ], # 29 (P5/32-large) | |||
[ -1, 1, Conv, [ 768, 3, 2 ] ], | |||
[ [ -1, 12 ], 1, Concat, [ 1 ] ], # cat head P6 | |||
[ -1, 3, C3, [ 1024, False ] ], # 32 (P5/64-xlarge) | |||
[ [ 23, 26, 29, 32 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5, P6) | |||
] |
@@ -0,0 +1,67 @@ | |||
# parameters | |||
nc: 80 # number of classes | |||
depth_multiple: 1.0 # model depth multiple | |||
width_multiple: 1.0 # layer channel multiple | |||
# anchors | |||
anchors: 3 | |||
# YOLOv5 backbone | |||
backbone: | |||
# [from, number, module, args] | |||
[ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2 | |||
[ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4 | |||
[ -1, 3, C3, [ 128 ] ], | |||
[ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8 | |||
[ -1, 9, C3, [ 256 ] ], | |||
[ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16 | |||
[ -1, 9, C3, [ 512 ] ], | |||
[ -1, 1, Conv, [ 768, 3, 2 ] ], # 7-P5/32 | |||
[ -1, 3, C3, [ 768 ] ], | |||
[ -1, 1, Conv, [ 1024, 3, 2 ] ], # 9-P6/64 | |||
[ -1, 3, C3, [ 1024 ] ], | |||
[ -1, 1, Conv, [ 1280, 3, 2 ] ], # 11-P7/128 | |||
[ -1, 1, SPP, [ 1280, [ 3, 5 ] ] ], | |||
[ -1, 3, C3, [ 1280, False ] ], # 13 | |||
] | |||
# YOLOv5 head | |||
head: | |||
[ [ -1, 1, Conv, [ 1024, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 10 ], 1, Concat, [ 1 ] ], # cat backbone P6 | |||
[ -1, 3, C3, [ 1024, False ] ], # 17 | |||
[ -1, 1, Conv, [ 768, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 8 ], 1, Concat, [ 1 ] ], # cat backbone P5 | |||
[ -1, 3, C3, [ 768, False ] ], # 21 | |||
[ -1, 1, Conv, [ 512, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4 | |||
[ -1, 3, C3, [ 512, False ] ], # 25 | |||
[ -1, 1, Conv, [ 256, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3 | |||
[ -1, 3, C3, [ 256, False ] ], # 29 (P3/8-small) | |||
[ -1, 1, Conv, [ 256, 3, 2 ] ], | |||
[ [ -1, 26 ], 1, Concat, [ 1 ] ], # cat head P4 | |||
[ -1, 3, C3, [ 512, False ] ], # 32 (P4/16-medium) | |||
[ -1, 1, Conv, [ 512, 3, 2 ] ], | |||
[ [ -1, 22 ], 1, Concat, [ 1 ] ], # cat head P5 | |||
[ -1, 3, C3, [ 768, False ] ], # 35 (P5/32-large) | |||
[ -1, 1, Conv, [ 768, 3, 2 ] ], | |||
[ [ -1, 18 ], 1, Concat, [ 1 ] ], # cat head P6 | |||
[ -1, 3, C3, [ 1024, False ] ], # 38 (P6/64-xlarge) | |||
[ -1, 1, Conv, [ 1024, 3, 2 ] ], | |||
[ [ -1, 14 ], 1, Concat, [ 1 ] ], # cat head P7 | |||
[ -1, 3, C3, [ 1280, False ] ], # 41 (P7/128-xxlarge) | |||
[ [ 29, 32, 35, 38, 41 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5, P6, P7) | |||
] |
@@ -0,0 +1,48 @@ | |||
# parameters | |||
nc: 80 # number of classes | |||
depth_multiple: 1.0 # model depth multiple | |||
width_multiple: 1.0 # layer channel multiple | |||
# anchors | |||
anchors: | |||
- [10,13, 16,30, 33,23] # P3/8 | |||
- [30,61, 62,45, 59,119] # P4/16 | |||
- [116,90, 156,198, 373,326] # P5/32 | |||
# YOLOv5 backbone | |||
backbone: | |||
# [from, number, module, args] | |||
[[-1, 1, Focus, [64, 3]], # 0-P1/2 | |||
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4 | |||
[-1, 3, BottleneckCSP, [128]], | |||
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8 | |||
[-1, 9, BottleneckCSP, [256]], | |||
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16 | |||
[-1, 9, BottleneckCSP, [512]], | |||
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 | |||
[-1, 1, SPP, [1024, [5, 9, 13]]], | |||
[-1, 3, BottleneckCSP, [1024, False]], # 9 | |||
] | |||
# YOLOv5 PANet head | |||
head: | |||
[[-1, 1, Conv, [512, 1, 1]], | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | |||
[[-1, 6], 1, Concat, [1]], # cat backbone P4 | |||
[-1, 3, BottleneckCSP, [512, False]], # 13 | |||
[-1, 1, Conv, [256, 1, 1]], | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | |||
[[-1, 4], 1, Concat, [1]], # cat backbone P3 | |||
[-1, 3, BottleneckCSP, [256, False]], # 17 (P3/8-small) | |||
[-1, 1, Conv, [256, 3, 2]], | |||
[[-1, 14], 1, Concat, [1]], # cat head P4 | |||
[-1, 3, BottleneckCSP, [512, False]], # 20 (P4/16-medium) | |||
[-1, 1, Conv, [512, 3, 2]], | |||
[[-1, 10], 1, Concat, [1]], # cat head P5 | |||
[-1, 3, BottleneckCSP, [1024, False]], # 23 (P5/32-large) | |||
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) | |||
] |
@@ -0,0 +1,60 @@ | |||
# parameters | |||
nc: 80 # number of classes | |||
depth_multiple: 1.0 # model depth multiple | |||
width_multiple: 1.0 # layer channel multiple | |||
# anchors | |||
anchors: | |||
- [ 19,27, 44,40, 38,94 ] # P3/8 | |||
- [ 96,68, 86,152, 180,137 ] # P4/16 | |||
- [ 140,301, 303,264, 238,542 ] # P5/32 | |||
- [ 436,615, 739,380, 925,792 ] # P6/64 | |||
# YOLOv5 backbone | |||
backbone: | |||
# [from, number, module, args] | |||
[ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2 | |||
[ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4 | |||
[ -1, 3, C3, [ 128 ] ], | |||
[ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8 | |||
[ -1, 9, C3, [ 256 ] ], | |||
[ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16 | |||
[ -1, 9, C3, [ 512 ] ], | |||
[ -1, 1, Conv, [ 768, 3, 2 ] ], # 7-P5/32 | |||
[ -1, 3, C3, [ 768 ] ], | |||
[ -1, 1, Conv, [ 1024, 3, 2 ] ], # 9-P6/64 | |||
[ -1, 1, SPP, [ 1024, [ 3, 5, 7 ] ] ], | |||
[ -1, 3, C3, [ 1024, False ] ], # 11 | |||
] | |||
# YOLOv5 head | |||
head: | |||
[ [ -1, 1, Conv, [ 768, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 8 ], 1, Concat, [ 1 ] ], # cat backbone P5 | |||
[ -1, 3, C3, [ 768, False ] ], # 15 | |||
[ -1, 1, Conv, [ 512, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4 | |||
[ -1, 3, C3, [ 512, False ] ], # 19 | |||
[ -1, 1, Conv, [ 256, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3 | |||
[ -1, 3, C3, [ 256, False ] ], # 23 (P3/8-small) | |||
[ -1, 1, Conv, [ 256, 3, 2 ] ], | |||
[ [ -1, 20 ], 1, Concat, [ 1 ] ], # cat head P4 | |||
[ -1, 3, C3, [ 512, False ] ], # 26 (P4/16-medium) | |||
[ -1, 1, Conv, [ 512, 3, 2 ] ], | |||
[ [ -1, 16 ], 1, Concat, [ 1 ] ], # cat head P5 | |||
[ -1, 3, C3, [ 768, False ] ], # 29 (P5/32-large) | |||
[ -1, 1, Conv, [ 768, 3, 2 ] ], | |||
[ [ -1, 12 ], 1, Concat, [ 1 ] ], # cat head P6 | |||
[ -1, 3, C3, [ 1024, False ] ], # 32 (P6/64-xlarge) | |||
[ [ 23, 26, 29, 32 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5, P6) | |||
] |
@@ -0,0 +1,60 @@ | |||
# parameters | |||
nc: 80 # number of classes | |||
depth_multiple: 0.67 # model depth multiple | |||
width_multiple: 0.75 # layer channel multiple | |||
# anchors | |||
anchors: | |||
- [ 19,27, 44,40, 38,94 ] # P3/8 | |||
- [ 96,68, 86,152, 180,137 ] # P4/16 | |||
- [ 140,301, 303,264, 238,542 ] # P5/32 | |||
- [ 436,615, 739,380, 925,792 ] # P6/64 | |||
# YOLOv5 backbone | |||
backbone: | |||
# [from, number, module, args] | |||
[ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2 | |||
[ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4 | |||
[ -1, 3, C3, [ 128 ] ], | |||
[ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8 | |||
[ -1, 9, C3, [ 256 ] ], | |||
[ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16 | |||
[ -1, 9, C3, [ 512 ] ], | |||
[ -1, 1, Conv, [ 768, 3, 2 ] ], # 7-P5/32 | |||
[ -1, 3, C3, [ 768 ] ], | |||
[ -1, 1, Conv, [ 1024, 3, 2 ] ], # 9-P6/64 | |||
[ -1, 1, SPP, [ 1024, [ 3, 5, 7 ] ] ], | |||
[ -1, 3, C3, [ 1024, False ] ], # 11 | |||
] | |||
# YOLOv5 head | |||
head: | |||
[ [ -1, 1, Conv, [ 768, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 8 ], 1, Concat, [ 1 ] ], # cat backbone P5 | |||
[ -1, 3, C3, [ 768, False ] ], # 15 | |||
[ -1, 1, Conv, [ 512, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4 | |||
[ -1, 3, C3, [ 512, False ] ], # 19 | |||
[ -1, 1, Conv, [ 256, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3 | |||
[ -1, 3, C3, [ 256, False ] ], # 23 (P3/8-small) | |||
[ -1, 1, Conv, [ 256, 3, 2 ] ], | |||
[ [ -1, 20 ], 1, Concat, [ 1 ] ], # cat head P4 | |||
[ -1, 3, C3, [ 512, False ] ], # 26 (P4/16-medium) | |||
[ -1, 1, Conv, [ 512, 3, 2 ] ], | |||
[ [ -1, 16 ], 1, Concat, [ 1 ] ], # cat head P5 | |||
[ -1, 3, C3, [ 768, False ] ], # 29 (P5/32-large) | |||
[ -1, 1, Conv, [ 768, 3, 2 ] ], | |||
[ [ -1, 12 ], 1, Concat, [ 1 ] ], # cat head P6 | |||
[ -1, 3, C3, [ 1024, False ] ], # 32 (P6/64-xlarge) | |||
[ [ 23, 26, 29, 32 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5, P6) | |||
] |
@@ -0,0 +1,48 @@ | |||
# parameters | |||
nc: 80 # number of classes | |||
depth_multiple: 0.33 # model depth multiple | |||
width_multiple: 0.50 # layer channel multiple | |||
# anchors | |||
anchors: | |||
- [10,13, 16,30, 33,23] # P3/8 | |||
- [30,61, 62,45, 59,119] # P4/16 | |||
- [116,90, 156,198, 373,326] # P5/32 | |||
# YOLOv5 backbone | |||
backbone: | |||
# [from, number, module, args] | |||
[[-1, 1, Focus, [64, 3]], # 0-P1/2 | |||
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4 | |||
[-1, 3, C3, [128]], | |||
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8 | |||
[-1, 9, C3, [256]], | |||
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16 | |||
[-1, 9, C3, [512]], | |||
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 | |||
[-1, 1, SPP, [1024, [5, 9, 13]]], | |||
[-1, 3, C3TR, [1024, False]], # 9 <-------- C3TR() Transformer module | |||
] | |||
# YOLOv5 head | |||
head: | |||
[[-1, 1, Conv, [512, 1, 1]], | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | |||
[[-1, 6], 1, Concat, [1]], # cat backbone P4 | |||
[-1, 3, C3, [512, False]], # 13 | |||
[-1, 1, Conv, [256, 1, 1]], | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | |||
[[-1, 4], 1, Concat, [1]], # cat backbone P3 | |||
[-1, 3, C3, [256, False]], # 17 (P3/8-small) | |||
[-1, 1, Conv, [256, 3, 2]], | |||
[[-1, 14], 1, Concat, [1]], # cat head P4 | |||
[-1, 3, C3, [512, False]], # 20 (P4/16-medium) | |||
[-1, 1, Conv, [512, 3, 2]], | |||
[[-1, 10], 1, Concat, [1]], # cat head P5 | |||
[-1, 3, C3, [1024, False]], # 23 (P5/32-large) | |||
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) | |||
] |
@@ -0,0 +1,60 @@ | |||
# parameters | |||
nc: 80 # number of classes | |||
depth_multiple: 0.33 # model depth multiple | |||
width_multiple: 0.50 # layer channel multiple | |||
# anchors | |||
anchors: | |||
- [ 19,27, 44,40, 38,94 ] # P3/8 | |||
- [ 96,68, 86,152, 180,137 ] # P4/16 | |||
- [ 140,301, 303,264, 238,542 ] # P5/32 | |||
- [ 436,615, 739,380, 925,792 ] # P6/64 | |||
# YOLOv5 backbone | |||
backbone: | |||
# [from, number, module, args] | |||
[ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2 | |||
[ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4 | |||
[ -1, 3, C3, [ 128 ] ], | |||
[ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8 | |||
[ -1, 9, C3, [ 256 ] ], | |||
[ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16 | |||
[ -1, 9, C3, [ 512 ] ], | |||
[ -1, 1, Conv, [ 768, 3, 2 ] ], # 7-P5/32 | |||
[ -1, 3, C3, [ 768 ] ], | |||
[ -1, 1, Conv, [ 1024, 3, 2 ] ], # 9-P6/64 | |||
[ -1, 1, SPP, [ 1024, [ 3, 5, 7 ] ] ], | |||
[ -1, 3, C3, [ 1024, False ] ], # 11 | |||
] | |||
# YOLOv5 head | |||
head: | |||
[ [ -1, 1, Conv, [ 768, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 8 ], 1, Concat, [ 1 ] ], # cat backbone P5 | |||
[ -1, 3, C3, [ 768, False ] ], # 15 | |||
[ -1, 1, Conv, [ 512, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4 | |||
[ -1, 3, C3, [ 512, False ] ], # 19 | |||
[ -1, 1, Conv, [ 256, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3 | |||
[ -1, 3, C3, [ 256, False ] ], # 23 (P3/8-small) | |||
[ -1, 1, Conv, [ 256, 3, 2 ] ], | |||
[ [ -1, 20 ], 1, Concat, [ 1 ] ], # cat head P4 | |||
[ -1, 3, C3, [ 512, False ] ], # 26 (P4/16-medium) | |||
[ -1, 1, Conv, [ 512, 3, 2 ] ], | |||
[ [ -1, 16 ], 1, Concat, [ 1 ] ], # cat head P5 | |||
[ -1, 3, C3, [ 768, False ] ], # 29 (P5/32-large) | |||
[ -1, 1, Conv, [ 768, 3, 2 ] ], | |||
[ [ -1, 12 ], 1, Concat, [ 1 ] ], # cat head P6 | |||
[ -1, 3, C3, [ 1024, False ] ], # 32 (P6/64-xlarge) | |||
[ [ 23, 26, 29, 32 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5, P6) | |||
] |
@@ -0,0 +1,60 @@ | |||
# parameters | |||
nc: 80 # number of classes | |||
depth_multiple: 1.33 # model depth multiple | |||
width_multiple: 1.25 # layer channel multiple | |||
# anchors | |||
anchors: | |||
- [ 19,27, 44,40, 38,94 ] # P3/8 | |||
- [ 96,68, 86,152, 180,137 ] # P4/16 | |||
- [ 140,301, 303,264, 238,542 ] # P5/32 | |||
- [ 436,615, 739,380, 925,792 ] # P6/64 | |||
# YOLOv5 backbone | |||
backbone: | |||
# [from, number, module, args] | |||
[ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2 | |||
[ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4 | |||
[ -1, 3, C3, [ 128 ] ], | |||
[ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8 | |||
[ -1, 9, C3, [ 256 ] ], | |||
[ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16 | |||
[ -1, 9, C3, [ 512 ] ], | |||
[ -1, 1, Conv, [ 768, 3, 2 ] ], # 7-P5/32 | |||
[ -1, 3, C3, [ 768 ] ], | |||
[ -1, 1, Conv, [ 1024, 3, 2 ] ], # 9-P6/64 | |||
[ -1, 1, SPP, [ 1024, [ 3, 5, 7 ] ] ], | |||
[ -1, 3, C3, [ 1024, False ] ], # 11 | |||
] | |||
# YOLOv5 head | |||
head: | |||
[ [ -1, 1, Conv, [ 768, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 8 ], 1, Concat, [ 1 ] ], # cat backbone P5 | |||
[ -1, 3, C3, [ 768, False ] ], # 15 | |||
[ -1, 1, Conv, [ 512, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4 | |||
[ -1, 3, C3, [ 512, False ] ], # 19 | |||
[ -1, 1, Conv, [ 256, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3 | |||
[ -1, 3, C3, [ 256, False ] ], # 23 (P3/8-small) | |||
[ -1, 1, Conv, [ 256, 3, 2 ] ], | |||
[ [ -1, 20 ], 1, Concat, [ 1 ] ], # cat head P4 | |||
[ -1, 3, C3, [ 512, False ] ], # 26 (P4/16-medium) | |||
[ -1, 1, Conv, [ 512, 3, 2 ] ], | |||
[ [ -1, 16 ], 1, Concat, [ 1 ] ], # cat head P5 | |||
[ -1, 3, C3, [ 768, False ] ], # 29 (P5/32-large) | |||
[ -1, 1, Conv, [ 768, 3, 2 ] ], | |||
[ [ -1, 12 ], 1, Concat, [ 1 ] ], # cat head P6 | |||
[ -1, 3, C3, [ 1024, False ] ], # 32 (P6/64-xlarge) | |||
[ [ 23, 26, 29, 32 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5, P6) | |||
] |
@@ -0,0 +1,284 @@ | |||
# YOLOv5 YOLO-specific modules | |||
import argparse | |||
import logging | |||
import sys | |||
from copy import deepcopy | |||
import torch | |||
sys.path.append('./') # to run '$ python *.py' files in subdirectories | |||
logger = logging.getLogger(__name__) | |||
from models.common import * | |||
from models.experimental import * | |||
from utils.autoanchor import check_anchor_order | |||
from utils.general import make_divisible, check_file, set_logging | |||
from utils.torch_utils import time_synchronized, fuse_conv_and_bn, model_info, scale_img, initialize_weights, \ | |||
select_device, copy_attr | |||
try: | |||
import thop # for FLOPS computation | |||
except ImportError: | |||
thop = None | |||
class Detect(nn.Module): | |||
stride = None # strides computed during build | |||
export = False # onnx export | |||
def __init__(self, nc=80, anchors=(), ch=()): # detection layers | |||
super(Detect, self).__init__() | |||
self.no = 6 | |||
self.nl = 3 | |||
self.na = len(anchors[0]) // 2 # number of anchors | |||
self.grid = [torch.zeros(1)] * self.nl # init grid | |||
a = torch.tensor(anchors).float().view(self.nl, -1, 2) | |||
self.register_buffer('anchors', a) # shape(nl,na,2) | |||
self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2) | |||
self.m = nn.ModuleList(nn.Conv2d(x, self.no, 1) for x in ch) # output conv | |||
def forward(self, x): | |||
# x = x.copy() # for profiling | |||
# z = [] # inference output | |||
# # self.training |= self.export | |||
# for i in range(self.nl): | |||
# x[i] = self.m[i](x[i]) # conv | |||
# bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85) | |||
# x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous() | |||
# | |||
# if not self.training: # inference | |||
# if self.grid[i].shape[2:4] != x[i].shape[2:4]: | |||
# self.grid[i] = self._make_grid(nx, ny).to(x[i].device) | |||
# | |||
# y = x[i].sigmoid() | |||
# y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy | |||
# y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh | |||
# z.append(y.view(bs, -1, self.no)) | |||
prediction = self.m[0](x[0]) | |||
point_pred, angle_pred = torch.split(prediction, 4, dim=1) | |||
point_pred = torch.sigmoid(point_pred) | |||
angle_pred = torch.tanh(angle_pred) | |||
return torch.cat((point_pred, angle_pred), dim=1) | |||
@staticmethod | |||
def _make_grid(nx=20, ny=20): | |||
yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)]) | |||
return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float() | |||
class Model(nn.Module): | |||
def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None): # model, input channels, number of classes | |||
super(Model, self).__init__() | |||
if isinstance(cfg, dict): | |||
self.yaml = cfg # model dict | |||
else: # is *.yaml | |||
import yaml # for torch hub | |||
self.yaml_file = Path(cfg).name | |||
with open(cfg) as f: | |||
self.yaml = yaml.load(f, Loader=yaml.SafeLoader) # model dict | |||
# Define model | |||
ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels | |||
if nc and nc != self.yaml['nc']: | |||
logger.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}") | |||
self.yaml['nc'] = nc # override yaml value | |||
if anchors: | |||
logger.info(f'Overriding model.yaml anchors with anchors={anchors}') | |||
self.yaml['anchors'] = round(anchors) # override yaml value | |||
self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist | |||
self.names = [str(i) for i in range(self.yaml['nc'])] # default names | |||
# print([x.shape for x in self.forward(torch.zeros(1, ch, 64, 64))]) | |||
# Build strides, anchors | |||
m = self.model[-1] # Detect() | |||
# if isinstance(m, Detect): | |||
# s = 256 # 2x min stride | |||
# m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward | |||
# m.anchors /= m.stride.view(-1, 1, 1) | |||
# check_anchor_order(m) | |||
# self.stride = m.stride | |||
# self._initialize_biases() # only run once | |||
# print('Strides: %s' % m.stride.tolist()) | |||
# Init weights, biases | |||
initialize_weights(self) | |||
self.info() | |||
logger.info('') | |||
def forward(self, x, augment=False, profile=False): | |||
if augment: | |||
img_size = x.shape[-2:] # height, width | |||
s = [1, 0.83, 0.67] # scales | |||
f = [None, 3, None] # flips (2-ud, 3-lr) | |||
y = [] # outputs | |||
for si, fi in zip(s, f): | |||
xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max())) | |||
yi = self.forward_once(xi)[0] # forward | |||
# cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # save | |||
yi[..., :4] /= si # de-scale | |||
if fi == 2: | |||
yi[..., 1] = img_size[0] - yi[..., 1] # de-flip ud | |||
elif fi == 3: | |||
yi[..., 0] = img_size[1] - yi[..., 0] # de-flip lr | |||
y.append(yi) | |||
return torch.cat(y, 1), None # augmented inference, train | |||
else: | |||
return self.forward_once(x, profile) # single-scale inference, train | |||
def forward_once(self, x, profile=False): | |||
y, dt = [], [] # outputs | |||
for m in self.model: | |||
if m.f != -1: # if not from previous layer | |||
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers | |||
if profile: | |||
o = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPS | |||
t = time_synchronized() | |||
for _ in range(10): | |||
_ = m(x) | |||
dt.append((time_synchronized() - t) * 100) | |||
print('%10.1f%10.0f%10.1fms %-40s' % (o, m.np, dt[-1], m.type)) | |||
x = m(x) # run | |||
y.append(x if m.i in self.save else None) # save output | |||
if profile: | |||
print('%.1fms total' % sum(dt)) | |||
return x | |||
def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency | |||
# https://arxiv.org/abs/1708.02002 section 3.3 | |||
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1. | |||
m = self.model[-1] # Detect() module | |||
for mi, s in zip(m.m, m.stride): # from | |||
b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85) | |||
b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image) | |||
b.data[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls | |||
mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True) | |||
def _print_biases(self): | |||
m = self.model[-1] # Detect() module | |||
for mi in m.m: # from | |||
b = mi.bias.detach().view(m.na, -1).T # conv.bias(255) to (3,85) | |||
print(('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean())) | |||
# def _print_weights(self): | |||
# for m in self.model.modules(): | |||
# if type(m) is Bottleneck: | |||
# print('%10.3g' % (m.w.detach().sigmoid() * 2)) # shortcut weights | |||
def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers | |||
print('Fusing layers... ') | |||
for m in self.model.modules(): | |||
if type(m) is Conv and hasattr(m, 'bn'): | |||
m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv | |||
delattr(m, 'bn') # remove batchnorm | |||
m.forward = m.fuseforward # update forward | |||
self.info() | |||
return self | |||
def nms(self, mode=True): # add or remove NMS module | |||
present = type(self.model[-1]) is NMS # last layer is NMS | |||
if mode and not present: | |||
print('Adding NMS... ') | |||
m = NMS() # module | |||
m.f = -1 # from | |||
m.i = self.model[-1].i + 1 # index | |||
self.model.add_module(name='%s' % m.i, module=m) # add | |||
self.eval() | |||
elif not mode and present: | |||
print('Removing NMS... ') | |||
self.model = self.model[:-1] # remove | |||
return self | |||
def autoshape(self): # add autoShape module | |||
print('Adding autoShape... ') | |||
m = autoShape(self) # wrap model | |||
copy_attr(m, self, include=('yaml', 'nc', 'hyp', 'names', 'stride'), exclude=()) # copy attributes | |||
return m | |||
def info(self, verbose=False, img_size=640): # print model information | |||
model_info(self, verbose, img_size) | |||
def parse_model(d, ch): # model_dict, input_channels(3) | |||
logger.info('\n%3s%18s%3s%10s %-40s%-30s' % ('', 'from', 'n', 'params', 'module', 'arguments')) | |||
anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple'] | |||
na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors | |||
# no = na * (nc + 5) # number of outputs = anchors * (classes + 5) | |||
no = 6 | |||
layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out | |||
for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args | |||
m = eval(m) if isinstance(m, str) else m # eval strings | |||
for j, a in enumerate(args): | |||
try: | |||
args[j] = eval(a) if isinstance(a, str) else a # eval strings | |||
except: | |||
pass | |||
n = max(round(n * gd), 1) if n > 1 else n # depth gain | |||
if m in [Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP, | |||
C3, C3TR]: | |||
c1, c2 = ch[f], args[0] | |||
if c2 != no: # if not output | |||
c2 = make_divisible(c2 * gw, 8) | |||
args = [c1, c2, *args[1:]] | |||
if m in [BottleneckCSP, C3, C3TR]: | |||
args.insert(2, n) # number of repeats | |||
n = 1 | |||
elif m is nn.BatchNorm2d: | |||
args = [ch[f]] | |||
elif m is Concat: | |||
c2 = sum([ch[x] for x in f]) | |||
elif m is Detect: | |||
args.append([ch[x] for x in f]) | |||
if isinstance(args[1], int): # number of anchors | |||
args[1] = [list(range(args[1] * 2))] * len(f) | |||
elif m is Contract: | |||
c2 = ch[f] * args[0] ** 2 | |||
elif m is Expand: | |||
c2 = ch[f] // args[0] ** 2 | |||
else: | |||
c2 = ch[f] | |||
m_ = nn.Sequential(*[m(*args) for _ in range(n)]) if n > 1 else m(*args) # module | |||
t = str(m)[8:-2].replace('__main__.', '') # module type | |||
np = sum([x.numel() for x in m_.parameters()]) # number params | |||
m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params | |||
logger.info('%3s%18s%3s%10.0f %-40s%-30s' % (i, f, n, np, t, args)) # print | |||
save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist | |||
layers.append(m_) | |||
if i == 0: | |||
ch = [] | |||
ch.append(c2) | |||
return nn.Sequential(*layers), sorted(save) | |||
if __name__ == '__main__': | |||
parser = argparse.ArgumentParser() | |||
parser.add_argument('--cfg', type=str, default='yolov5s.yaml', help='model.yaml') | |||
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') | |||
opt = parser.parse_args() | |||
opt.cfg = check_file(opt.cfg) # check file | |||
set_logging() | |||
device = select_device(opt.device) | |||
# Create model | |||
model = Model(opt.cfg).to(device) | |||
model.train() | |||
# Profile | |||
# img = torch.rand(8 if torch.cuda.is_available() else 1, 3, 640, 640).to(device) | |||
# y = model(img, profile=True) | |||
# Tensorboard | |||
# from torch.utils.tensorboard import SummaryWriter | |||
# tb_writer = SummaryWriter() | |||
# print("Run 'tensorboard --logdir=models/runs' to view tensorboard at http://localhost:6006/") | |||
# tb_writer.add_graph(model.model, img) # add model to tensorboard | |||
# tb_writer.add_image('test', img[0], dataformats='CWH') # add model to tensorboard |
@@ -0,0 +1,48 @@ | |||
# parameters | |||
nc: 80 # number of classes | |||
depth_multiple: 1.0 # model depth multiple | |||
width_multiple: 1.0 # layer channel multiple | |||
# anchors | |||
anchors: | |||
- [10,13, 16,30, 33,23] # P3/8 | |||
- [30,61, 62,45, 59,119] # P4/16 | |||
- [116,90, 156,198, 373,326] # P5/32 | |||
# YOLOv5 backbone | |||
backbone: | |||
# [from, number, module, args] | |||
[[-1, 1, Focus, [64, 3]], # 0-P1/2 | |||
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4 | |||
[-1, 3, C3, [128]], | |||
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8 | |||
[-1, 9, C3, [256]], | |||
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16 | |||
[-1, 9, C3, [512]], | |||
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 | |||
[-1, 1, SPP, [1024, [5, 9, 13]]], | |||
[-1, 3, C3, [1024, False]], # 9 | |||
] | |||
# YOLOv5 head | |||
head: | |||
[[-1, 1, Conv, [512, 1, 1]], | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | |||
[[-1, 6], 1, Concat, [1]], # cat backbone P4 | |||
[-1, 3, C3, [512, False]], # 13 | |||
[-1, 1, Conv, [256, 1, 1]], | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | |||
[[-1, 4], 1, Concat, [1]], # cat backbone P3 | |||
[-1, 3, C3, [256, False]], # 17 (P3/8-small) | |||
[-1, 1, Conv, [256, 3, 2]], | |||
[[-1, 14], 1, Concat, [1]], # cat head P4 | |||
[-1, 3, C3, [512, False]], # 20 (P4/16-medium) | |||
[-1, 1, Conv, [512, 3, 2]], | |||
[[-1, 10], 1, Concat, [1]], # cat head P5 | |||
[-1, 3, C3, [1024, False]], # 23 (P5/32-large) | |||
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) | |||
] |
@@ -0,0 +1,48 @@ | |||
# parameters | |||
nc: 80 # number of classes | |||
depth_multiple: 0.67 # model depth multiple | |||
width_multiple: 0.75 # layer channel multiple | |||
# anchors | |||
anchors: | |||
- [10,13, 16,30, 33,23] # P3/8 | |||
- [30,61, 62,45, 59,119] # P4/16 | |||
- [116,90, 156,198, 373,326] # P5/32 | |||
# YOLOv5 backbone | |||
backbone: | |||
# [from, number, module, args] | |||
[[-1, 1, Focus, [64, 3]], # 0-P1/2 | |||
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4 | |||
[-1, 3, C3, [128]], | |||
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8 | |||
[-1, 9, C3, [256]], | |||
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16 | |||
[-1, 9, C3, [512]], | |||
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 | |||
[-1, 1, SPP, [1024, [5, 9, 13]]], | |||
[-1, 3, C3, [1024, False]], # 9 | |||
] | |||
# YOLOv5 head | |||
head: | |||
[[-1, 1, Conv, [512, 1, 1]], | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | |||
[[-1, 6], 1, Concat, [1]], # cat backbone P4 | |||
[-1, 3, C3, [512, False]], # 13 | |||
[-1, 1, Conv, [256, 1, 1]], | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | |||
[[-1, 4], 1, Concat, [1]], # cat backbone P3 | |||
[-1, 3, C3, [256, False]], # 17 (P3/8-small) | |||
[-1, 1, Conv, [256, 3, 2]], | |||
[[-1, 14], 1, Concat, [1]], # cat head P4 | |||
[-1, 3, C3, [512, False]], # 20 (P4/16-medium) | |||
[-1, 1, Conv, [512, 3, 2]], | |||
[[-1, 10], 1, Concat, [1]], # cat head P5 | |||
[-1, 3, C3, [1024, False]], # 23 (P5/32-large) | |||
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) | |||
] |
@@ -0,0 +1,48 @@ | |||
# parameters | |||
nc: 80 # number of classes | |||
depth_multiple: 0.33 # model depth multiple | |||
width_multiple: 0.50 # layer channel multiple | |||
# anchors | |||
anchors: | |||
- [10,13, 16,30, 33,23] # P3/8 | |||
- [30,61, 62,45, 59,119] # P4/16 | |||
- [116,90, 156,198, 373,326] # P5/32 | |||
# YOLOv5 backbone | |||
backbone: | |||
# [from, number, module, args] | |||
[[-1, 1, Focus, [64, 3]], # 0-P1/2 | |||
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4 | |||
[-1, 3, C3, [128]], | |||
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8 | |||
[-1, 9, C3, [256]], | |||
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16 | |||
[-1, 9, C3, [512]], | |||
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 | |||
[-1, 1, SPP, [1024, [5, 9, 13]]], | |||
[-1, 3, C3, [1024, False]], # 9 | |||
] | |||
# YOLOv5 head | |||
head: | |||
[[-1, 1, Conv, [512, 1, 1]], | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | |||
[[-1, 6], 1, Concat, [1]], # cat backbone P4 | |||
[-1, 3, C3, [512, False]], # 13 | |||
[-1, 1, Conv, [256, 1, 1]], | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | |||
[[-1, 4], 1, Concat, [1]], # cat backbone P3 | |||
[-1, 3, C3, [256, False]], # 17 (P3/8-small) | |||
[-1, 1, Conv, [256, 3, 2]], | |||
[[-1, 14], 1, Concat, [1]], # cat head P4 | |||
[-1, 3, C3, [512, False]], # 20 (P4/16-medium) | |||
[-1, 1, Conv, [512, 3, 2]], | |||
[[-1, 10], 1, Concat, [1]], # cat head P5 | |||
[-1, 3, C3, [1024, False]], # 23 (P5/32-large) | |||
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) | |||
] |
@@ -0,0 +1,48 @@ | |||
# parameters | |||
nc: 80 # number of classes | |||
depth_multiple: 1.33 # model depth multiple | |||
width_multiple: 1.25 # layer channel multiple | |||
# anchors | |||
anchors: | |||
- [10,13, 16,30, 33,23] # P3/8 | |||
- [30,61, 62,45, 59,119] # P4/16 | |||
- [116,90, 156,198, 373,326] # P5/32 | |||
# YOLOv5 backbone | |||
backbone: | |||
# [from, number, module, args] | |||
[[-1, 1, Focus, [64, 3]], # 0-P1/2 | |||
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4 | |||
[-1, 3, C3, [128]], | |||
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8 | |||
[-1, 9, C3, [256]], | |||
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16 | |||
[-1, 9, C3, [512]], | |||
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 | |||
[-1, 1, SPP, [1024, [5, 9, 13]]], | |||
[-1, 3, C3, [1024, False]], # 9 | |||
] | |||
# YOLOv5 head | |||
head: | |||
[[-1, 1, Conv, [512, 1, 1]], | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | |||
[[-1, 6], 1, Concat, [1]], # cat backbone P4 | |||
[-1, 3, C3, [512, False]], # 13 | |||
[-1, 1, Conv, [256, 1, 1]], | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | |||
[[-1, 4], 1, Concat, [1]], # cat backbone P3 | |||
[-1, 3, C3, [256, False]], # 17 (P3/8-small) | |||
[-1, 1, Conv, [256, 3, 2]], | |||
[[-1, 14], 1, Concat, [1]], # cat head P4 | |||
[-1, 3, C3, [512, False]], # 20 (P4/16-medium) | |||
[-1, 1, Conv, [512, 3, 2]], | |||
[[-1, 10], 1, Concat, [1]], # cat head P5 | |||
[-1, 3, C3, [1024, False]], # 23 (P5/32-large) | |||
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) | |||
] |
@@ -0,0 +1,160 @@ | |||
# Auto-anchor utils | |||
import numpy as np | |||
import torch | |||
import yaml | |||
from scipy.cluster.vq import kmeans | |||
from tqdm import tqdm | |||
from utils.general import colorstr | |||
def check_anchor_order(m): | |||
# Check anchor order against stride order for YOLOv5 Detect() module m, and correct if necessary | |||
a = m.anchor_grid.prod(-1).view(-1) # anchor area | |||
da = a[-1] - a[0] # delta a | |||
ds = m.stride[-1] - m.stride[0] # delta s | |||
if da.sign() != ds.sign(): # same order | |||
print('Reversing anchor order') | |||
m.anchors[:] = m.anchors.flip(0) | |||
m.anchor_grid[:] = m.anchor_grid.flip(0) | |||
def check_anchors(dataset, model, thr=4.0, imgsz=640): | |||
# Check anchor fit to data, recompute if necessary | |||
prefix = colorstr('autoanchor: ') | |||
print(f'\n{prefix}Analyzing anchors... ', end='') | |||
m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1] # Detect() | |||
shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True) | |||
scale = np.random.uniform(0.9, 1.1, size=(shapes.shape[0], 1)) # augment scale | |||
wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes * scale, dataset.labels)])).float() # wh | |||
def metric(k): # compute metric | |||
r = wh[:, None] / k[None] | |||
x = torch.min(r, 1. / r).min(2)[0] # ratio metric | |||
best = x.max(1)[0] # best_x | |||
aat = (x > 1. / thr).float().sum(1).mean() # anchors above threshold | |||
bpr = (best > 1. / thr).float().mean() # best possible recall | |||
return bpr, aat | |||
anchors = m.anchor_grid.clone().cpu().view(-1, 2) # current anchors | |||
bpr, aat = metric(anchors) | |||
print(f'anchors/target = {aat:.2f}, Best Possible Recall (BPR) = {bpr:.4f}', end='') | |||
if bpr < 0.98: # threshold to recompute | |||
print('. Attempting to improve anchors, please wait...') | |||
na = m.anchor_grid.numel() // 2 # number of anchors | |||
try: | |||
anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False) | |||
except Exception as e: | |||
print(f'{prefix}ERROR: {e}') | |||
new_bpr = metric(anchors)[0] | |||
if new_bpr > bpr: # replace anchors | |||
anchors = torch.tensor(anchors, device=m.anchors.device).type_as(m.anchors) | |||
m.anchor_grid[:] = anchors.clone().view_as(m.anchor_grid) # for inference | |||
m.anchors[:] = anchors.clone().view_as(m.anchors) / m.stride.to(m.anchors.device).view(-1, 1, 1) # loss | |||
check_anchor_order(m) | |||
print(f'{prefix}New anchors saved to model. Update model *.yaml to use these anchors in the future.') | |||
else: | |||
print(f'{prefix}Original anchors better than new anchors. Proceeding with original anchors.') | |||
print('') # newline | |||
def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True): | |||
""" Creates kmeans-evolved anchors from training dataset | |||
Arguments: | |||
path: path to dataset *.yaml, or a loaded dataset | |||
n: number of anchors | |||
img_size: image size used for training | |||
thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0 | |||
gen: generations to evolve anchors using genetic algorithm | |||
verbose: print all results | |||
Return: | |||
k: kmeans evolved anchors | |||
Usage: | |||
from utils.autoanchor import *; _ = kmean_anchors() | |||
""" | |||
thr = 1. / thr | |||
prefix = colorstr('autoanchor: ') | |||
def metric(k, wh): # compute metrics | |||
r = wh[:, None] / k[None] | |||
x = torch.min(r, 1. / r).min(2)[0] # ratio metric | |||
# x = wh_iou(wh, torch.tensor(k)) # iou metric | |||
return x, x.max(1)[0] # x, best_x | |||
def anchor_fitness(k): # mutation fitness | |||
_, best = metric(torch.tensor(k, dtype=torch.float32), wh) | |||
return (best * (best > thr).float()).mean() # fitness | |||
def print_results(k): | |||
k = k[np.argsort(k.prod(1))] # sort small to large | |||
x, best = metric(k, wh0) | |||
bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n # best possible recall, anch > thr | |||
print(f'{prefix}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr') | |||
print(f'{prefix}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, ' | |||
f'past_thr={x[x > thr].mean():.3f}-mean: ', end='') | |||
for i, x in enumerate(k): | |||
print('%i,%i' % (round(x[0]), round(x[1])), end=', ' if i < len(k) - 1 else '\n') # use in *.cfg | |||
return k | |||
if isinstance(path, str): # *.yaml file | |||
with open(path) as f: | |||
data_dict = yaml.load(f, Loader=yaml.SafeLoader) # model dict | |||
from utils.datasets import LoadImagesAndLabels | |||
dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True) | |||
else: | |||
dataset = path # dataset | |||
# Get label wh | |||
shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True) | |||
wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)]) # wh | |||
# Filter | |||
i = (wh0 < 3.0).any(1).sum() | |||
if i: | |||
print(f'{prefix}WARNING: Extremely small objects found. {i} of {len(wh0)} labels are < 3 pixels in size.') | |||
wh = wh0[(wh0 >= 2.0).any(1)] # filter > 2 pixels | |||
# wh = wh * (np.random.rand(wh.shape[0], 1) * 0.9 + 0.1) # multiply by random scale 0-1 | |||
# Kmeans calculation | |||
print(f'{prefix}Running kmeans for {n} anchors on {len(wh)} points...') | |||
s = wh.std(0) # sigmas for whitening | |||
k, dist = kmeans(wh / s, n, iter=30) # points, mean distance | |||
assert len(k) == n, print(f'{prefix}ERROR: scipy.cluster.vq.kmeans requested {n} points but returned only {len(k)}') | |||
k *= s | |||
wh = torch.tensor(wh, dtype=torch.float32) # filtered | |||
wh0 = torch.tensor(wh0, dtype=torch.float32) # unfiltered | |||
k = print_results(k) | |||
# Plot | |||
# k, d = [None] * 20, [None] * 20 | |||
# for i in tqdm(range(1, 21)): | |||
# k[i-1], d[i-1] = kmeans(wh / s, i) # points, mean distance | |||
# fig, ax = plt.subplots(1, 2, figsize=(14, 7), tight_layout=True) | |||
# ax = ax.ravel() | |||
# ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.') | |||
# fig, ax = plt.subplots(1, 2, figsize=(14, 7)) # plot wh | |||
# ax[0].hist(wh[wh[:, 0]<100, 0],400) | |||
# ax[1].hist(wh[wh[:, 1]<100, 1],400) | |||
# fig.savefig('wh.png', dpi=200) | |||
# Evolve | |||
npr = np.random | |||
f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma | |||
pbar = tqdm(range(gen), desc=f'{prefix}Evolving anchors with Genetic Algorithm:') # progress bar | |||
for _ in pbar: | |||
v = np.ones(sh) | |||
while (v == 1).all(): # mutate until a change occurs (prevent duplicates) | |||
v = ((npr.random(sh) < mp) * npr.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0) | |||
kg = (k.copy() * v).clip(min=2.0) | |||
fg = anchor_fitness(kg) | |||
if fg > f: | |||
f, k = fg, kg.copy() | |||
pbar.desc = f'{prefix}Evolving anchors with Genetic Algorithm: fitness = {f:.4f}' | |||
if verbose: | |||
print_results(k) | |||
return print_results(k) |
@@ -0,0 +1,649 @@ | |||
# YOLOv5 general utils | |||
import glob | |||
import logging | |||
import math | |||
import os | |||
import platform | |||
import random | |||
import re | |||
import subprocess | |||
import time | |||
from pathlib import Path | |||
import cv2 | |||
import numpy as np | |||
import pandas as pd | |||
import torch | |||
import torchvision | |||
import yaml | |||
from utils.google_utils import gsutil_getsize | |||
from utils.metrics import fitness | |||
from utils.torch_utils import init_torch_seeds | |||
# Settings | |||
torch.set_printoptions(linewidth=320, precision=5, profile='long') | |||
np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5 | |||
pd.options.display.max_columns = 10 | |||
cv2.setNumThreads(0) # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader) | |||
os.environ['NUMEXPR_MAX_THREADS'] = str(min(os.cpu_count(), 8)) # NumExpr max threads | |||
def set_logging(rank=-1): | |||
logging.basicConfig( | |||
format="%(message)s", | |||
level=logging.INFO if rank in [-1, 0] else logging.WARN) | |||
def init_seeds(seed=0): | |||
# Initialize random number generator (RNG) seeds | |||
random.seed(seed) | |||
np.random.seed(seed) | |||
init_torch_seeds(seed) | |||
def get_latest_run(search_dir='.'): | |||
# Return path to most recent 'last.pt' in /runs (i.e. to --resume from) | |||
last_list = glob.glob(f'{search_dir}/**/last*.pt', recursive=True) | |||
return max(last_list, key=os.path.getctime) if last_list else '' | |||
def isdocker(): | |||
# Is environment a Docker container | |||
return Path('/workspace').exists() # or Path('/.dockerenv').exists() | |||
def emojis(str=''): | |||
# Return platform-dependent emoji-safe version of string | |||
return str.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else str | |||
def check_online(): | |||
# Check internet connectivity | |||
import socket | |||
try: | |||
socket.create_connection(("1.1.1.1", 443), 5) # check host accesability | |||
return True | |||
except OSError: | |||
return False | |||
def check_git_status(): | |||
# Recommend 'git pull' if code is out of date | |||
print(colorstr('github: '), end='') | |||
try: | |||
assert Path('.git').exists(), 'skipping check (not a git repository)' | |||
assert not isdocker(), 'skipping check (Docker image)' | |||
assert check_online(), 'skipping check (offline)' | |||
cmd = 'git fetch && git config --get remote.origin.url' | |||
url = subprocess.check_output(cmd, shell=True).decode().strip().rstrip('.git') # github repo url | |||
branch = subprocess.check_output('git rev-parse --abbrev-ref HEAD', shell=True).decode().strip() # checked out | |||
n = int(subprocess.check_output(f'git rev-list {branch}..origin/master --count', shell=True)) # commits behind | |||
if n > 0: | |||
s = f"⚠️ WARNING: code is out of date by {n} commit{'s' * (n > 1)}. " \ | |||
f"Use 'git pull' to update or 'git clone {url}' to download latest." | |||
else: | |||
s = f'up to date with {url} ✅' | |||
print(emojis(s)) # emoji-safe | |||
except Exception as e: | |||
print(e) | |||
def check_requirements(requirements='requirements.txt', exclude=()): | |||
# Check installed dependencies meet requirements (pass *.txt file or list of packages) | |||
import pkg_resources as pkg | |||
prefix = colorstr('red', 'bold', 'requirements:') | |||
if isinstance(requirements, (str, Path)): # requirements.txt file | |||
file = Path(requirements) | |||
if not file.exists(): | |||
print(f"{prefix} {file.resolve()} not found, check failed.") | |||
return | |||
requirements = [f'{x.name}{x.specifier}' for x in pkg.parse_requirements(file.open()) if x.name not in exclude] | |||
else: # list or tuple of packages | |||
requirements = [x for x in requirements if x not in exclude] | |||
n = 0 # number of packages updates | |||
for r in requirements: | |||
try: | |||
pkg.require(r) | |||
except Exception as e: # DistributionNotFound or VersionConflict if requirements not met | |||
n += 1 | |||
print(f"{prefix} {e.req} not found and is required by YOLOv5, attempting auto-update...") | |||
print(subprocess.check_output(f"pip install {e.req}", shell=True).decode()) | |||
if n: # if packages updated | |||
source = file.resolve() if 'file' in locals() else requirements | |||
s = f"{prefix} {n} package{'s' * (n > 1)} updated per {source}\n" \ | |||
f"{prefix} ⚠️ {colorstr('bold', 'Restart runtime or rerun command for updates to take effect')}\n" | |||
print(emojis(s)) # emoji-safe | |||
def check_img_size(img_size, s=32): | |||
# Verify img_size is a multiple of stride s | |||
new_size = make_divisible(img_size, int(s)) # ceil gs-multiple | |||
if new_size != img_size: | |||
print('WARNING: --img-size %g must be multiple of max stride %g, updating to %g' % (img_size, s, new_size)) | |||
return new_size | |||
def check_imshow(): | |||
# Check if environment supports image displays | |||
try: | |||
assert not isdocker(), 'cv2.imshow() is disabled in Docker environments' | |||
cv2.imshow('test', np.zeros((1, 1, 3))) | |||
cv2.waitKey(1) | |||
cv2.destroyAllWindows() | |||
cv2.waitKey(1) | |||
return True | |||
except Exception as e: | |||
print(f'WARNING: Environment does not support cv2.imshow() or PIL Image.show() image displays\n{e}') | |||
return False | |||
def check_file(file): | |||
# Search for file if not found | |||
if Path(file).is_file() or file == '': | |||
return file | |||
else: | |||
files = glob.glob('./**/' + file, recursive=True) # find file | |||
assert len(files), f'File Not Found: {file}' # assert file was found | |||
assert len(files) == 1, f"Multiple files match '{file}', specify exact path: {files}" # assert unique | |||
return files[0] # return file | |||
def check_dataset(dict): | |||
# Download dataset if not found locally | |||
val, s = dict.get('val'), dict.get('download') | |||
if val and len(val): | |||
val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])] # val path | |||
if not all(x.exists() for x in val): | |||
print('\nWARNING: Dataset not found, nonexistent paths: %s' % [str(x) for x in val if not x.exists()]) | |||
if s and len(s): # download script | |||
print('Downloading %s ...' % s) | |||
if s.startswith('http') and s.endswith('.zip'): # URL | |||
f = Path(s).name # filename | |||
torch.hub.download_url_to_file(s, f) | |||
r = os.system('unzip -q %s -d ../ && rm %s' % (f, f)) # unzip | |||
else: # bash script | |||
r = os.system(s) | |||
print('Dataset autodownload %s\n' % ('success' if r == 0 else 'failure')) # analyze return value | |||
else: | |||
raise Exception('Dataset not found.') | |||
def make_divisible(x, divisor): | |||
# Returns x evenly divisible by divisor | |||
return math.ceil(x / divisor) * divisor | |||
def clean_str(s): | |||
# Cleans a string by replacing special characters with underscore _ | |||
return re.sub(pattern="[|@#!¡·$€%&()=?¿^*;:,¨´><+]", repl="_", string=s) | |||
def one_cycle(y1=0.0, y2=1.0, steps=100): | |||
# lambda function for sinusoidal ramp from y1 to y2 | |||
return lambda x: ((1 - math.cos(x * math.pi / steps)) / 2) * (y2 - y1) + y1 | |||
def colorstr(*input): | |||
# Colors a string https://en.wikipedia.org/wiki/ANSI_escape_code, i.e. colorstr('blue', 'hello world') | |||
*args, string = input if len(input) > 1 else ('blue', 'bold', input[0]) # color arguments, string | |||
colors = {'black': '\033[30m', # basic colors | |||
'red': '\033[31m', | |||
'green': '\033[32m', | |||
'yellow': '\033[33m', | |||
'blue': '\033[34m', | |||
'magenta': '\033[35m', | |||
'cyan': '\033[36m', | |||
'white': '\033[37m', | |||
'bright_black': '\033[90m', # bright colors | |||
'bright_red': '\033[91m', | |||
'bright_green': '\033[92m', | |||
'bright_yellow': '\033[93m', | |||
'bright_blue': '\033[94m', | |||
'bright_magenta': '\033[95m', | |||
'bright_cyan': '\033[96m', | |||
'bright_white': '\033[97m', | |||
'end': '\033[0m', # misc | |||
'bold': '\033[1m', | |||
'underline': '\033[4m'} | |||
return ''.join(colors[x] for x in args) + f'{string}' + colors['end'] | |||
def labels_to_class_weights(labels, nc=80): | |||
# Get class weights (inverse frequency) from training labels | |||
if labels[0] is None: # no labels loaded | |||
return torch.Tensor() | |||
labels = np.concatenate(labels, 0) # labels.shape = (866643, 5) for COCO | |||
classes = labels[:, 0].astype(np.int) # labels = [class xywh] | |||
weights = np.bincount(classes, minlength=nc) # occurrences per class | |||
# Prepend gridpoint count (for uCE training) | |||
# gpi = ((320 / 32 * np.array([1, 2, 4])) ** 2 * 3).sum() # gridpoints per image | |||
# weights = np.hstack([gpi * len(labels) - weights.sum() * 9, weights * 9]) ** 0.5 # prepend gridpoints to start | |||
weights[weights == 0] = 1 # replace empty bins with 1 | |||
weights = 1 / weights # number of targets per class | |||
weights /= weights.sum() # normalize | |||
return torch.from_numpy(weights) | |||
def labels_to_image_weights(labels, nc=80, class_weights=np.ones(80)): | |||
# Produces image weights based on class_weights and image contents | |||
class_counts = np.array([np.bincount(x[:, 0].astype(np.int), minlength=nc) for x in labels]) | |||
image_weights = (class_weights.reshape(1, nc) * class_counts).sum(1) | |||
# index = random.choices(range(n), weights=image_weights, k=1) # weight image sample | |||
return image_weights | |||
def coco80_to_coco91_class(): # converts 80-index (val2014) to 91-index (paper) | |||
# https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/ | |||
# a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n') | |||
# b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n') | |||
# x1 = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco | |||
# x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)] # coco to darknet | |||
x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34, | |||
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, | |||
64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90] | |||
return x | |||
def xyxy2xywh(x): | |||
# Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right | |||
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) | |||
y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center | |||
y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center | |||
y[:, 2] = x[:, 2] - x[:, 0] # width | |||
y[:, 3] = x[:, 3] - x[:, 1] # height | |||
return y | |||
def xywh2xyxy(x): | |||
# Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right | |||
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) | |||
y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x | |||
y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y | |||
y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x | |||
y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y | |||
return y | |||
def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0): | |||
# Convert nx4 boxes from [x, y, w, h] normalized to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right | |||
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) | |||
y[:, 0] = w * (x[:, 0] - x[:, 2] / 2) + padw # top left x | |||
y[:, 1] = h * (x[:, 1] - x[:, 3] / 2) + padh # top left y | |||
y[:, 2] = w * (x[:, 0] + x[:, 2] / 2) + padw # bottom right x | |||
y[:, 3] = h * (x[:, 1] + x[:, 3] / 2) + padh # bottom right y | |||
return y | |||
def xyn2xy(x, w=640, h=640, padw=0, padh=0): | |||
# Convert normalized segments into pixel segments, shape (n,2) | |||
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) | |||
y[:, 0] = w * x[:, 0] + padw # top left x | |||
y[:, 1] = h * x[:, 1] + padh # top left y | |||
return y | |||
def segment2box(segment, width=640, height=640): | |||
# Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy) | |||
x, y = segment.T # segment xy | |||
inside = (x >= 0) & (y >= 0) & (x <= width) & (y <= height) | |||
x, y, = x[inside], y[inside] | |||
return np.array([x.min(), y.min(), x.max(), y.max()]) if any(x) else np.zeros((1, 4)) # xyxy | |||
def segments2boxes(segments): | |||
# Convert segment labels to box labels, i.e. (cls, xy1, xy2, ...) to (cls, xywh) | |||
boxes = [] | |||
for s in segments: | |||
x, y = s.T # segment xy | |||
boxes.append([x.min(), y.min(), x.max(), y.max()]) # cls, xyxy | |||
return xyxy2xywh(np.array(boxes)) # cls, xywh | |||
def resample_segments(segments, n=1000): | |||
# Up-sample an (n,2) segment | |||
for i, s in enumerate(segments): | |||
x = np.linspace(0, len(s) - 1, n) | |||
xp = np.arange(len(s)) | |||
segments[i] = np.concatenate([np.interp(x, xp, s[:, i]) for i in range(2)]).reshape(2, -1).T # segment xy | |||
return segments | |||
def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None): | |||
# Rescale coords (xyxy) from img1_shape to img0_shape | |||
if ratio_pad is None: # calculate from img0_shape | |||
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new | |||
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding | |||
else: | |||
gain = ratio_pad[0][0] | |||
pad = ratio_pad[1] | |||
coords[:, [0, 2]] -= pad[0] # x padding | |||
coords[:, [1, 3]] -= pad[1] # y padding | |||
coords[:, :4] /= gain | |||
clip_coords(coords, img0_shape) | |||
return coords | |||
def clip_coords(boxes, img_shape): | |||
# Clip bounding xyxy bounding boxes to image shape (height, width) | |||
boxes[:, 0].clamp_(0, img_shape[1]) # x1 | |||
boxes[:, 1].clamp_(0, img_shape[0]) # y1 | |||
boxes[:, 2].clamp_(0, img_shape[1]) # x2 | |||
boxes[:, 3].clamp_(0, img_shape[0]) # y2 | |||
def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7): | |||
# Returns the IoU of box1 to box2. box1 is 4, box2 is nx4 | |||
box2 = box2.T | |||
# Get the coordinates of bounding boxes | |||
if x1y1x2y2: # x1, y1, x2, y2 = box1 | |||
b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3] | |||
b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3] | |||
else: # transform from xywh to xyxy | |||
b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2 | |||
b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2 | |||
b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2 | |||
b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2 | |||
# Intersection area | |||
inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \ | |||
(torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0) | |||
# Union Area | |||
w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps | |||
w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps | |||
union = w1 * h1 + w2 * h2 - inter + eps | |||
iou = inter / union | |||
if GIoU or DIoU or CIoU: | |||
cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width | |||
ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height | |||
if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1 | |||
c2 = cw ** 2 + ch ** 2 + eps # convex diagonal squared | |||
rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + | |||
(b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 # center distance squared | |||
if DIoU: | |||
return iou - rho2 / c2 # DIoU | |||
elif CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47 | |||
v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2) | |||
with torch.no_grad(): | |||
alpha = v / (v - iou + (1 + eps)) | |||
return iou - (rho2 / c2 + v * alpha) # CIoU | |||
else: # GIoU https://arxiv.org/pdf/1902.09630.pdf | |||
c_area = cw * ch + eps # convex area | |||
return iou - (c_area - union) / c_area # GIoU | |||
else: | |||
return iou # IoU | |||
def box_iou(box1, box2): | |||
# https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py | |||
""" | |||
Return intersection-over-union (Jaccard index) of boxes. | |||
Both sets of boxes are expected to be in (x1, y1, x2, y2) format. | |||
Arguments: | |||
box1 (Tensor[N, 4]) | |||
box2 (Tensor[M, 4]) | |||
Returns: | |||
iou (Tensor[N, M]): the NxM matrix containing the pairwise | |||
IoU values for every element in boxes1 and boxes2 | |||
""" | |||
def box_area(box): | |||
# box = 4xn | |||
return (box[2] - box[0]) * (box[3] - box[1]) | |||
area1 = box_area(box1.T) | |||
area2 = box_area(box2.T) | |||
# inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2) | |||
inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2) | |||
return inter / (area1[:, None] + area2 - inter) # iou = inter / (area1 + area2 - inter) | |||
def wh_iou(wh1, wh2): | |||
# Returns the nxm IoU matrix. wh1 is nx2, wh2 is mx2 | |||
wh1 = wh1[:, None] # [N,1,2] | |||
wh2 = wh2[None] # [1,M,2] | |||
inter = torch.min(wh1, wh2).prod(2) # [N,M] | |||
return inter / (wh1.prod(2) + wh2.prod(2) - inter) # iou = inter / (area1 + area2 - inter) | |||
def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, multi_label=False, | |||
labels=()): | |||
"""Runs Non-Maximum Suppression (NMS) on inference results | |||
Returns: | |||
list of detections, on (n,6) tensor per image [xyxy, conf, cls] | |||
""" | |||
nc = prediction.shape[2] - 5 # number of classes | |||
xc = (prediction[..., 4] > conf_thres) & ( prediction[..., 4] < 1.0000001 ) # candidates | |||
# Settings | |||
min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height | |||
max_det = 300 # maximum number of detections per image | |||
max_nms = 30000 # maximum number of boxes into torchvision.ops.nms() | |||
time_limit = 10.0 # seconds to quit after | |||
redundant = True # require redundant detections | |||
multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img) | |||
merge = False # use merge-NMS | |||
t = time.time() | |||
output = [torch.zeros((0, 6), device=prediction.device)] * prediction.shape[0] | |||
for xi, x in enumerate(prediction): # image index, image inference | |||
# Apply constraints | |||
# x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height | |||
x = x[xc[xi]] # confidence | |||
# Cat apriori labels if autolabelling | |||
if labels and len(labels[xi]): | |||
l = labels[xi] | |||
v = torch.zeros((len(l), nc + 5), device=x.device) | |||
v[:, :4] = l[:, 1:5] # box | |||
v[:, 4] = 1.0 # conf | |||
v[range(len(l)), l[:, 0].long() + 5] = 1.0 # cls | |||
x = torch.cat((x, v), 0) | |||
# If none remain process next image | |||
if not x.shape[0]: | |||
continue | |||
# Compute conf | |||
x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf | |||
# Box (center x, center y, width, height) to (x1, y1, x2, y2) | |||
box = xywh2xyxy(x[:, :4]) | |||
# Detections matrix nx6 (xyxy, conf, cls) | |||
if multi_label: | |||
i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T | |||
x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1) | |||
else: # best class only | |||
conf, j = x[:, 5:].max(1, keepdim=True) | |||
x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres] | |||
# Filter by class | |||
if classes is not None: | |||
x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)] | |||
# Apply finite constraint | |||
# if not torch.isfinite(x).all(): | |||
# x = x[torch.isfinite(x).all(1)] | |||
# Check shape | |||
n = x.shape[0] # number of boxes | |||
if not n: # no boxes | |||
continue | |||
elif n > max_nms: # excess boxes | |||
x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence | |||
# Batched NMS | |||
c = x[:, 5:6] * (0 if agnostic else max_wh) # classes | |||
boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores | |||
i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS | |||
if i.shape[0] > max_det: # limit detections | |||
i = i[:max_det] | |||
if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean) | |||
# update boxes as boxes(i,4) = weights(i,n) * boxes(n,4) | |||
iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix | |||
weights = iou * scores[None] # box weights | |||
x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes | |||
if redundant: | |||
i = i[iou.sum(1) > 1] # require redundancy | |||
output[xi] = x[i] | |||
if (time.time() - t) > time_limit: | |||
print(f'WARNING: NMS time limit {time_limit}s exceeded') | |||
break # time limit exceeded | |||
return output | |||
def overlap_box_suppression(prediction, ovlap_thres = 0.6): | |||
"""Runs overlap_box_suppression on inference results | |||
delete the box that overlap of boxes bigger than ovlap_thres | |||
Returns: | |||
list of detections, on (n,6) tensor per image [xyxy, conf, cls] | |||
""" | |||
def box_iob(box1, box2): | |||
def box_area(box): | |||
return (box[:, 2] - box[:, 0]) * (box[:, 3] - box[:, 1]) | |||
area1 = box_area(box1) # (N,) | |||
area2 = box_area(box2) # (M,) | |||
# inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2) | |||
lt = torch.max(box1[:, None, :2], box2[:, :2]) # [N,M,2] # N中一个和M个比较; | |||
rb = torch.min(box1[:, None, 2:], box2[:, 2:]) # [N,M,2] | |||
wh = (rb - lt).clamp(min=0) #小于0的为0 clamp 钳;夹钳; | |||
inter = wh[:, :, 0] * wh[:, :, 1] | |||
return torch.squeeze(inter / area1), torch.squeeze(inter / area2) | |||
output = [torch.zeros((0, 6), device=prediction[0].device)] * len(prediction) | |||
for i, x in enumerate(prediction): | |||
keep = [] # 最终保留的结果, 在boxes中对应的索引; | |||
boxes = x[:, 0:4] | |||
scores = x[:, 4] | |||
cls = x[:, 5] | |||
idxs = scores.argsort() | |||
while idxs.numel() > 0: | |||
keep_idx = idxs[-1] | |||
keep_box = boxes[keep_idx][None, ] # [1, 4] | |||
keep.append(keep_idx) | |||
if idxs.size(0) == 1: | |||
break | |||
idxs = idxs[:-1] # 将得分最大框 从索引中删除; 剩余索引对应的框 和 得分最大框 计算iob; | |||
other_boxes = boxes[idxs] | |||
this_cls = cls[keep_idx] | |||
other_cls = cls[idxs] | |||
iobs1, iobs2 = box_iob(keep_box, other_boxes) # 一个框和其余框比较 1XM | |||
idxs = idxs[((iobs1 <= ovlap_thres) & (iobs2 <= ovlap_thres)) | (other_cls != this_cls)] | |||
keep = idxs.new(keep) # Tensor | |||
output[i] = x[keep] | |||
return output | |||
def strip_optimizer(f='best.pt', s=''): # from utils.general import *; strip_optimizer() | |||
# Strip optimizer from 'f' to finalize training, optionally save as 's' | |||
x = torch.load(f, map_location=torch.device('cpu')) | |||
if x.get('ema'): | |||
x['model'] = x['ema'] # replace model with ema | |||
for k in 'optimizer', 'training_results', 'wandb_id', 'ema', 'updates': # keys | |||
x[k] = None | |||
x['epoch'] = -1 | |||
x['model'].half() # to FP16 | |||
for p in x['model'].parameters(): | |||
p.requires_grad = False | |||
torch.save(x, s or f) | |||
mb = os.path.getsize(s or f) / 1E6 # filesize | |||
print(f"Optimizer stripped from {f},{(' saved as %s,' % s) if s else ''} {mb:.1f}MB") | |||
def print_mutation(hyp, results, yaml_file='hyp_evolved.yaml', bucket=''): | |||
# Print mutation results to evolve.txt (for use with train.py --evolve) | |||
a = '%10s' * len(hyp) % tuple(hyp.keys()) # hyperparam keys | |||
b = '%10.3g' * len(hyp) % tuple(hyp.values()) # hyperparam values | |||
c = '%10.4g' * len(results) % results # results (P, R, mAP@0.5, mAP@0.5:0.95, val_losses x 3) | |||
print('\n%s\n%s\nEvolved fitness: %s\n' % (a, b, c)) | |||
if bucket: | |||
url = 'gs://%s/evolve.txt' % bucket | |||
if gsutil_getsize(url) > (os.path.getsize('evolve.txt') if os.path.exists('evolve.txt') else 0): | |||
os.system('gsutil cp %s .' % url) # download evolve.txt if larger than local | |||
with open('evolve.txt', 'a') as f: # append result | |||
f.write(c + b + '\n') | |||
x = np.unique(np.loadtxt('evolve.txt', ndmin=2), axis=0) # load unique rows | |||
x = x[np.argsort(-fitness(x))] # sort | |||
np.savetxt('evolve.txt', x, '%10.3g') # save sort by fitness | |||
# Save yaml | |||
for i, k in enumerate(hyp.keys()): | |||
hyp[k] = float(x[0, i + 7]) | |||
with open(yaml_file, 'w') as f: | |||
results = tuple(x[0, :7]) | |||
c = '%10.4g' * len(results) % results # results (P, R, mAP@0.5, mAP@0.5:0.95, val_losses x 3) | |||
f.write('# Hyperparameter Evolution Results\n# Generations: %g\n# Metrics: ' % len(x) + c + '\n\n') | |||
yaml.dump(hyp, f, sort_keys=False) | |||
if bucket: | |||
os.system('gsutil cp evolve.txt %s gs://%s' % (yaml_file, bucket)) # upload | |||
def apply_classifier(x, model, img, im0): | |||
# applies a second stage classifier to yolo outputs | |||
im0 = [im0] if isinstance(im0, np.ndarray) else im0 | |||
for i, d in enumerate(x): # per image | |||
if d is not None and len(d): | |||
d = d.clone() | |||
# Reshape and pad cutouts | |||
b = xyxy2xywh(d[:, :4]) # boxes | |||
b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # rectangle to square | |||
b[:, 2:] = b[:, 2:] * 1.3 + 30 # pad | |||
d[:, :4] = xywh2xyxy(b).long() | |||
# Rescale boxes from img_size to im0 size | |||
scale_coords(img.shape[2:], d[:, :4], im0[i].shape) | |||
# Classes | |||
pred_cls1 = d[:, 5].long() | |||
ims = [] | |||
for j, a in enumerate(d): # per item | |||
cutout = im0[i][int(a[1]):int(a[3]), int(a[0]):int(a[2])] | |||
im = cv2.resize(cutout, (224, 224)) # BGR | |||
# cv2.imwrite('test%i.jpg' % j, cutout) | |||
im = im[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416 | |||
im = np.ascontiguousarray(im, dtype=np.float32) # uint8 to float32 | |||
im /= 255.0 # 0 - 255 to 0.0 - 1.0 | |||
ims.append(im) | |||
pred_cls2 = model(torch.Tensor(ims).to(d.device)).argmax(1) # classifier prediction | |||
x[i] = x[i][pred_cls1 == pred_cls2] # retain matching class detections | |||
return x | |||
def increment_path(path, exist_ok=True, sep=''): | |||
# Increment path, i.e. runs/exp --> runs/exp{sep}0, runs/exp{sep}1 etc. | |||
path = Path(path) # os-agnostic | |||
if (path.exists() and exist_ok) or (not path.exists()): | |||
return str(path) | |||
else: | |||
dirs = glob.glob(f"{path}{sep}*") # similar paths | |||
matches = [re.search(rf"%s{sep}(\d+)" % path.stem, d) for d in dirs] | |||
i = [int(m.groups()[0]) for m in matches if m] # indices | |||
n = max(i) + 1 if i else 2 # increment number | |||
return f"{path}{sep}{n}" # update path |
@@ -0,0 +1,122 @@ | |||
# Google utils: https://cloud.google.com/storage/docs/reference/libraries | |||
import os | |||
import platform | |||
import subprocess | |||
import time | |||
from pathlib import Path | |||
import requests | |||
import torch | |||
def gsutil_getsize(url=''): | |||
# gs://bucket/file size https://cloud.google.com/storage/docs/gsutil/commands/du | |||
s = subprocess.check_output(f'gsutil du {url}', shell=True).decode('utf-8') | |||
return eval(s.split(' ')[0]) if len(s) else 0 # bytes | |||
def attempt_download(file, repo='ultralytics/yolov5'): | |||
# Attempt file download if does not exist | |||
file = Path(str(file).strip().replace("'", '').lower()) | |||
if not file.exists(): | |||
try: | |||
response = requests.get(f'https://api.github.com/repos/{repo}/releases/latest').json() # github api | |||
assets = [x['name'] for x in response['assets']] # release assets, i.e. ['yolov5s.pt', 'yolov5m.pt', ...] | |||
tag = response['tag_name'] # i.e. 'v1.0' | |||
except: # fallback plan | |||
assets = ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt'] | |||
tag = subprocess.check_output('git tag', shell=True).decode().split()[-1] | |||
name = file.name | |||
if name in assets: | |||
msg = f'{file} missing, try downloading from https://github.com/{repo}/releases/' | |||
redundant = False # second download option | |||
try: # GitHub | |||
url = f'https://github.com/{repo}/releases/download/{tag}/{name}' | |||
print(f'Downloading {url} to {file}...') | |||
torch.hub.download_url_to_file(url, file) | |||
assert file.exists() and file.stat().st_size > 1E6 # check | |||
except Exception as e: # GCP | |||
print(f'Download error: {e}') | |||
assert redundant, 'No secondary mirror' | |||
url = f'https://storage.googleapis.com/{repo}/ckpt/{name}' | |||
print(f'Downloading {url} to {file}...') | |||
os.system(f'curl -L {url} -o {file}') # torch.hub.download_url_to_file(url, weights) | |||
finally: | |||
if not file.exists() or file.stat().st_size < 1E6: # check | |||
file.unlink(missing_ok=True) # remove partial downloads | |||
print(f'ERROR: Download failure: {msg}') | |||
print('') | |||
return | |||
def gdrive_download(id='16TiPfZj7htmTyhntwcZyEEAejOUxuT6m', file='tmp.zip'): | |||
# Downloads a file from Google Drive. from yolov5.utils.google_utils import *; gdrive_download() | |||
t = time.time() | |||
file = Path(file) | |||
cookie = Path('cookie') # gdrive cookie | |||
print(f'Downloading https://drive.google.com/uc?export=download&id={id} as {file}... ', end='') | |||
file.unlink(missing_ok=True) # remove existing file | |||
cookie.unlink(missing_ok=True) # remove existing cookie | |||
# Attempt file download | |||
out = "NUL" if platform.system() == "Windows" else "/dev/null" | |||
os.system(f'curl -c ./cookie -s -L "drive.google.com/uc?export=download&id={id}" > {out}') | |||
if os.path.exists('cookie'): # large file | |||
s = f'curl -Lb ./cookie "drive.google.com/uc?export=download&confirm={get_token()}&id={id}" -o {file}' | |||
else: # small file | |||
s = f'curl -s -L -o {file} "drive.google.com/uc?export=download&id={id}"' | |||
r = os.system(s) # execute, capture return | |||
cookie.unlink(missing_ok=True) # remove existing cookie | |||
# Error check | |||
if r != 0: | |||
file.unlink(missing_ok=True) # remove partial | |||
print('Download error ') # raise Exception('Download error') | |||
return r | |||
# Unzip if archive | |||
if file.suffix == '.zip': | |||
print('unzipping... ', end='') | |||
os.system(f'unzip -q {file}') # unzip | |||
file.unlink() # remove zip to free space | |||
print(f'Done ({time.time() - t:.1f}s)') | |||
return r | |||
def get_token(cookie="./cookie"): | |||
with open(cookie) as f: | |||
for line in f: | |||
if "download" in line: | |||
return line.split()[-1] | |||
return "" | |||
# def upload_blob(bucket_name, source_file_name, destination_blob_name): | |||
# # Uploads a file to a bucket | |||
# # https://cloud.google.com/storage/docs/uploading-objects#storage-upload-object-python | |||
# | |||
# storage_client = storage.Client() | |||
# bucket = storage_client.get_bucket(bucket_name) | |||
# blob = bucket.blob(destination_blob_name) | |||
# | |||
# blob.upload_from_filename(source_file_name) | |||
# | |||
# print('File {} uploaded to {}.'.format( | |||
# source_file_name, | |||
# destination_blob_name)) | |||
# | |||
# | |||
# def download_blob(bucket_name, source_blob_name, destination_file_name): | |||
# # Uploads a blob from a bucket | |||
# storage_client = storage.Client() | |||
# bucket = storage_client.get_bucket(bucket_name) | |||
# blob = bucket.blob(source_blob_name) | |||
# | |||
# blob.download_to_filename(destination_file_name) | |||
# | |||
# print('Blob {} downloaded to {}.'.format( | |||
# source_blob_name, | |||
# destination_file_name)) |
@@ -0,0 +1,223 @@ | |||
# Model validation metrics | |||
from pathlib import Path | |||
import matplotlib.pyplot as plt | |||
import numpy as np | |||
import torch | |||
from . import general | |||
def fitness(x): | |||
# Model fitness as a weighted combination of metrics | |||
w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, mAP@0.5, mAP@0.5:0.95] | |||
return (x[:, :4] * w).sum(1) | |||
def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='.', names=()): | |||
""" Compute the average precision, given the recall and precision curves. | |||
Source: https://github.com/rafaelpadilla/Object-Detection-Metrics. | |||
# Arguments | |||
tp: True positives (nparray, nx1 or nx10). | |||
conf: Objectness value from 0-1 (nparray). | |||
pred_cls: Predicted object classes (nparray). | |||
target_cls: True object classes (nparray). | |||
plot: Plot precision-recall curve at mAP@0.5 | |||
save_dir: Plot save directory | |||
# Returns | |||
The average precision as computed in py-faster-rcnn. | |||
""" | |||
# Sort by objectness | |||
i = np.argsort(-conf) | |||
tp, conf, pred_cls = tp[i], conf[i], pred_cls[i] | |||
# Find unique classes | |||
unique_classes = np.unique(target_cls) | |||
nc = unique_classes.shape[0] # number of classes, number of detections | |||
# Create Precision-Recall curve and compute AP for each class | |||
px, py = np.linspace(0, 1, 1000), [] # for plotting | |||
ap, p, r = np.zeros((nc, tp.shape[1])), np.zeros((nc, 1000)), np.zeros((nc, 1000)) | |||
for ci, c in enumerate(unique_classes): | |||
i = pred_cls == c | |||
n_l = (target_cls == c).sum() # number of labels | |||
n_p = i.sum() # number of predictions | |||
if n_p == 0 or n_l == 0: | |||
continue | |||
else: | |||
# Accumulate FPs and TPs | |||
fpc = (1 - tp[i]).cumsum(0) | |||
tpc = tp[i].cumsum(0) | |||
# Recall | |||
recall = tpc / (n_l + 1e-16) # recall curve | |||
r[ci] = np.interp(-px, -conf[i], recall[:, 0], left=0) # negative x, xp because xp decreases | |||
# Precision | |||
precision = tpc / (tpc + fpc) # precision curve | |||
p[ci] = np.interp(-px, -conf[i], precision[:, 0], left=1) # p at pr_score | |||
# AP from recall-precision curve | |||
for j in range(tp.shape[1]): | |||
ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j]) | |||
if plot and j == 0: | |||
py.append(np.interp(px, mrec, mpre)) # precision at mAP@0.5 | |||
# Compute F1 (harmonic mean of precision and recall) | |||
f1 = 2 * p * r / (p + r + 1e-16) | |||
if plot: | |||
plot_pr_curve(px, py, ap, Path(save_dir) / 'PR_curve.png', names) | |||
plot_mc_curve(px, f1, Path(save_dir) / 'F1_curve.png', names, ylabel='F1') | |||
plot_mc_curve(px, p, Path(save_dir) / 'P_curve.png', names, ylabel='Precision') | |||
plot_mc_curve(px, r, Path(save_dir) / 'R_curve.png', names, ylabel='Recall') | |||
i = f1.mean(0).argmax() # max F1 index | |||
return p[:, i], r[:, i], ap, f1[:, i], unique_classes.astype('int32') | |||
def compute_ap(recall, precision): | |||
""" Compute the average precision, given the recall and precision curves | |||
# Arguments | |||
recall: The recall curve (list) | |||
precision: The precision curve (list) | |||
# Returns | |||
Average precision, precision curve, recall curve | |||
""" | |||
# Append sentinel values to beginning and end | |||
mrec = np.concatenate(([0.], recall, [recall[-1] + 0.01])) | |||
mpre = np.concatenate(([1.], precision, [0.])) | |||
# Compute the precision envelope | |||
mpre = np.flip(np.maximum.accumulate(np.flip(mpre))) | |||
# Integrate area under curve | |||
method = 'interp' # methods: 'continuous', 'interp' | |||
if method == 'interp': | |||
x = np.linspace(0, 1, 101) # 101-point interp (COCO) | |||
ap = np.trapz(np.interp(x, mrec, mpre), x) # integrate | |||
else: # 'continuous' | |||
i = np.where(mrec[1:] != mrec[:-1])[0] # points where x axis (recall) changes | |||
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve | |||
return ap, mpre, mrec | |||
class ConfusionMatrix: | |||
# Updated version of https://github.com/kaanakan/object_detection_confusion_matrix | |||
def __init__(self, nc, conf=0.25, iou_thres=0.45): | |||
self.matrix = np.zeros((nc + 1, nc + 1)) | |||
self.nc = nc # number of classes | |||
self.conf = conf | |||
self.iou_thres = iou_thres | |||
def process_batch(self, detections, labels): | |||
""" | |||
Return intersection-over-union (Jaccard index) of boxes. | |||
Both sets of boxes are expected to be in (x1, y1, x2, y2) format. | |||
Arguments: | |||
detections (Array[N, 6]), x1, y1, x2, y2, conf, class | |||
labels (Array[M, 5]), class, x1, y1, x2, y2 | |||
Returns: | |||
None, updates confusion matrix accordingly | |||
""" | |||
detections = detections[detections[:, 4] > self.conf] | |||
gt_classes = labels[:, 0].int() | |||
detection_classes = detections[:, 5].int() | |||
iou = general.box_iou(labels[:, 1:], detections[:, :4]) | |||
x = torch.where(iou > self.iou_thres) | |||
if x[0].shape[0]: | |||
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy() | |||
if x[0].shape[0] > 1: | |||
matches = matches[matches[:, 2].argsort()[::-1]] | |||
matches = matches[np.unique(matches[:, 1], return_index=True)[1]] | |||
matches = matches[matches[:, 2].argsort()[::-1]] | |||
matches = matches[np.unique(matches[:, 0], return_index=True)[1]] | |||
else: | |||
matches = np.zeros((0, 3)) | |||
n = matches.shape[0] > 0 | |||
m0, m1, _ = matches.transpose().astype(np.int16) | |||
for i, gc in enumerate(gt_classes): | |||
j = m0 == i | |||
if n and sum(j) == 1: | |||
self.matrix[gc, detection_classes[m1[j]]] += 1 # correct | |||
else: | |||
self.matrix[self.nc, gc] += 1 # background FP | |||
if n: | |||
for i, dc in enumerate(detection_classes): | |||
if not any(m1 == i): | |||
self.matrix[dc, self.nc] += 1 # background FN | |||
def matrix(self): | |||
return self.matrix | |||
def plot(self, save_dir='', names=()): | |||
try: | |||
import seaborn as sn | |||
array = self.matrix / (self.matrix.sum(0).reshape(1, self.nc + 1) + 1E-6) # normalize | |||
array[array < 0.005] = np.nan # don't annotate (would appear as 0.00) | |||
fig = plt.figure(figsize=(12, 9), tight_layout=True) | |||
sn.set(font_scale=1.0 if self.nc < 50 else 0.8) # for label size | |||
labels = (0 < len(names) < 99) and len(names) == self.nc # apply names to ticklabels | |||
sn.heatmap(array, annot=self.nc < 30, annot_kws={"size": 8}, cmap='Blues', fmt='.2f', square=True, | |||
xticklabels=names + ['background FP'] if labels else "auto", | |||
yticklabels=names + ['background FN'] if labels else "auto").set_facecolor((1, 1, 1)) | |||
fig.axes[0].set_xlabel('True') | |||
fig.axes[0].set_ylabel('Predicted') | |||
fig.savefig(Path(save_dir) / 'confusion_matrix.png', dpi=250) | |||
except Exception as e: | |||
pass | |||
def print(self): | |||
for i in range(self.nc + 1): | |||
print(' '.join(map(str, self.matrix[i]))) | |||
# Plots ---------------------------------------------------------------------------------------------------------------- | |||
def plot_pr_curve(px, py, ap, save_dir='pr_curve.png', names=()): | |||
# Precision-recall curve | |||
fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True) | |||
py = np.stack(py, axis=1) | |||
if 0 < len(names) < 21: # display per-class legend if < 21 classes | |||
for i, y in enumerate(py.T): | |||
ax.plot(px, y, linewidth=1, label=f'{names[i]} {ap[i, 0]:.3f}') # plot(recall, precision) | |||
else: | |||
ax.plot(px, py, linewidth=1, color='grey') # plot(recall, precision) | |||
ax.plot(px, py.mean(1), linewidth=3, color='blue', label='all classes %.3f mAP@0.5' % ap[:, 0].mean()) | |||
ax.set_xlabel('Recall') | |||
ax.set_ylabel('Precision') | |||
ax.set_xlim(0, 1) | |||
ax.set_ylim(0, 1) | |||
plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left") | |||
fig.savefig(Path(save_dir), dpi=250) | |||
def plot_mc_curve(px, py, save_dir='mc_curve.png', names=(), xlabel='Confidence', ylabel='Metric'): | |||
# Metric-confidence curve | |||
fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True) | |||
if 0 < len(names) < 21: # display per-class legend if < 21 classes | |||
for i, y in enumerate(py): | |||
ax.plot(px, y, linewidth=1, label=f'{names[i]}') # plot(confidence, metric) | |||
else: | |||
ax.plot(px, py.T, linewidth=1, color='grey') # plot(confidence, metric) | |||
y = py.mean(0) | |||
ax.plot(px, y, linewidth=3, color='blue', label=f'all classes {y.max():.2f} at {px[y.argmax()]:.3f}') | |||
ax.set_xlabel(xlabel) | |||
ax.set_ylabel(ylabel) | |||
ax.set_xlim(0, 1) | |||
ax.set_ylim(0, 1) | |||
plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left") | |||
fig.savefig(Path(save_dir), dpi=250) |
@@ -0,0 +1,433 @@ | |||
# Plotting utils | |||
import glob | |||
import math | |||
import os | |||
import random | |||
from copy import copy | |||
from pathlib import Path | |||
import cv2 | |||
import matplotlib | |||
import matplotlib.pyplot as plt | |||
import numpy as np | |||
import pandas as pd | |||
import seaborn as sns | |||
import torch | |||
import yaml | |||
from PIL import Image, ImageDraw, ImageFont | |||
from scipy.signal import butter, filtfilt | |||
from utils.general import xywh2xyxy, xyxy2xywh | |||
from utils.metrics import fitness | |||
# Settings | |||
matplotlib.rc('font', **{'size': 11}) | |||
matplotlib.use('Agg') # for writing to files only | |||
def color_list(): | |||
# Return first 10 plt colors as (r,g,b) https://stackoverflow.com/questions/51350872/python-from-color-name-to-rgb | |||
def hex2rgb(h): | |||
return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4)) | |||
return [hex2rgb(h) for h in matplotlib.colors.TABLEAU_COLORS.values()] # or BASE_ (8), CSS4_ (148), XKCD_ (949) | |||
def hist2d(x, y, n=100): | |||
# 2d histogram used in labels.png and evolve.png | |||
xedges, yedges = np.linspace(x.min(), x.max(), n), np.linspace(y.min(), y.max(), n) | |||
hist, xedges, yedges = np.histogram2d(x, y, (xedges, yedges)) | |||
xidx = np.clip(np.digitize(x, xedges) - 1, 0, hist.shape[0] - 1) | |||
yidx = np.clip(np.digitize(y, yedges) - 1, 0, hist.shape[1] - 1) | |||
return np.log(hist[xidx, yidx]) | |||
def butter_lowpass_filtfilt(data, cutoff=1500, fs=50000, order=5): | |||
# https://stackoverflow.com/questions/28536191/how-to-filter-smooth-with-scipy-numpy | |||
def butter_lowpass(cutoff, fs, order): | |||
nyq = 0.5 * fs | |||
normal_cutoff = cutoff / nyq | |||
return butter(order, normal_cutoff, btype='low', analog=False) | |||
b, a = butter_lowpass(cutoff, fs, order=order) | |||
return filtfilt(b, a, data) # forward-backward filter | |||
def plot_one_box(x, img, color=None, label=None, line_thickness=3): | |||
# Plots one bounding box on image img | |||
tl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1 # line/font thickness | |||
color = color or [random.randint(0, 255) for _ in range(3)] | |||
c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3])) | |||
cv2.rectangle(img, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA) | |||
if label: | |||
tf = max(tl - 1, 1) # font thickness | |||
t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0] | |||
c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3 | |||
cv2.rectangle(img, c1, c2, color, -1, cv2.LINE_AA) # filled | |||
cv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA) | |||
def plot_one_box_PIL(box, img, color=None, label=None, line_thickness=None): | |||
img = Image.fromarray(img) | |||
draw = ImageDraw.Draw(img) | |||
line_thickness = line_thickness or max(int(min(img.size) / 200), 2) | |||
draw.rectangle(box, width=line_thickness, outline=tuple(color)) # plot | |||
if label: | |||
fontsize = max(round(max(img.size) / 40), 12) | |||
font = ImageFont.truetype("Arial.ttf", fontsize) | |||
txt_width, txt_height = font.getsize(label) | |||
draw.rectangle([box[0], box[1] - txt_height + 4, box[0] + txt_width, box[1]], fill=tuple(color)) | |||
draw.text((box[0], box[1] - txt_height + 1), label, fill=(255, 255, 255), font=font) | |||
return np.asarray(img) | |||
def plot_wh_methods(): # from utils.plots import *; plot_wh_methods() | |||
# Compares the two methods for width-height anchor multiplication | |||
# https://github.com/ultralytics/yolov3/issues/168 | |||
x = np.arange(-4.0, 4.0, .1) | |||
ya = np.exp(x) | |||
yb = torch.sigmoid(torch.from_numpy(x)).numpy() * 2 | |||
fig = plt.figure(figsize=(6, 3), tight_layout=True) | |||
plt.plot(x, ya, '.-', label='YOLOv3') | |||
plt.plot(x, yb ** 2, '.-', label='YOLOv5 ^2') | |||
plt.plot(x, yb ** 1.6, '.-', label='YOLOv5 ^1.6') | |||
plt.xlim(left=-4, right=4) | |||
plt.ylim(bottom=0, top=6) | |||
plt.xlabel('input') | |||
plt.ylabel('output') | |||
plt.grid() | |||
plt.legend() | |||
fig.savefig('comparison.png', dpi=200) | |||
def output_to_target(output): | |||
# Convert model output to target format [batch_id, class_id, x, y, w, h, conf] | |||
targets = [] | |||
for i, o in enumerate(output): | |||
for *box, conf, cls in o.cpu().numpy(): | |||
targets.append([i, cls, *list(*xyxy2xywh(np.array(box)[None])), conf]) | |||
return np.array(targets) | |||
def plot_images(images, targets, paths=None, fname='images.jpg', names=None, max_size=640, max_subplots=16): | |||
# Plot image grid with labels | |||
if isinstance(images, torch.Tensor): | |||
images = images.cpu().float().numpy() | |||
if isinstance(targets, torch.Tensor): | |||
targets = targets.cpu().numpy() | |||
# un-normalise | |||
if np.max(images[0]) <= 1: | |||
images *= 255 | |||
tl = 3 # line thickness | |||
tf = max(tl - 1, 1) # font thickness | |||
bs, _, h, w = images.shape # batch size, _, height, width | |||
bs = min(bs, max_subplots) # limit plot images | |||
ns = np.ceil(bs ** 0.5) # number of subplots (square) | |||
# Check if we should resize | |||
scale_factor = max_size / max(h, w) | |||
if scale_factor < 1: | |||
h = math.ceil(scale_factor * h) | |||
w = math.ceil(scale_factor * w) | |||
colors = color_list() # list of colors | |||
mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # init | |||
for i, img in enumerate(images): | |||
if i == max_subplots: # if last batch has fewer images than we expect | |||
break | |||
block_x = int(w * (i // ns)) | |||
block_y = int(h * (i % ns)) | |||
img = img.transpose(1, 2, 0) | |||
if scale_factor < 1: | |||
img = cv2.resize(img, (w, h)) | |||
mosaic[block_y:block_y + h, block_x:block_x + w, :] = img | |||
if len(targets) > 0: | |||
image_targets = targets[targets[:, 0] == i] | |||
boxes = xywh2xyxy(image_targets[:, 2:6]).T | |||
classes = image_targets[:, 1].astype('int') | |||
labels = image_targets.shape[1] == 6 # labels if no conf column | |||
conf = None if labels else image_targets[:, 6] # check for confidence presence (label vs pred) | |||
if boxes.shape[1]: | |||
if boxes.max() <= 1.01: # if normalized with tolerance 0.01 | |||
boxes[[0, 2]] *= w # scale to pixels | |||
boxes[[1, 3]] *= h | |||
elif scale_factor < 1: # absolute coords need scale if image scales | |||
boxes *= scale_factor | |||
boxes[[0, 2]] += block_x | |||
boxes[[1, 3]] += block_y | |||
for j, box in enumerate(boxes.T): | |||
cls = int(classes[j]) | |||
color = colors[cls % len(colors)] | |||
cls = names[cls] if names else cls | |||
if labels or conf[j] > 0.25: # 0.25 conf thresh | |||
label = '%s' % cls if labels else '%s %.1f' % (cls, conf[j]) | |||
plot_one_box(box, mosaic, label=label, color=color, line_thickness=tl) | |||
# Draw image filename labels | |||
if paths: | |||
label = Path(paths[i]).name[:40] # trim to 40 char | |||
t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0] | |||
cv2.putText(mosaic, label, (block_x + 5, block_y + t_size[1] + 5), 0, tl / 3, [220, 220, 220], thickness=tf, | |||
lineType=cv2.LINE_AA) | |||
# Image border | |||
cv2.rectangle(mosaic, (block_x, block_y), (block_x + w, block_y + h), (255, 255, 255), thickness=3) | |||
if fname: | |||
r = min(1280. / max(h, w) / ns, 1.0) # ratio to limit image size | |||
mosaic = cv2.resize(mosaic, (int(ns * w * r), int(ns * h * r)), interpolation=cv2.INTER_AREA) | |||
# cv2.imwrite(fname, cv2.cvtColor(mosaic, cv2.COLOR_BGR2RGB)) # cv2 save | |||
Image.fromarray(mosaic).save(fname) # PIL save | |||
return mosaic | |||
def plot_lr_scheduler(optimizer, scheduler, epochs=300, save_dir=''): | |||
# Plot LR simulating training for full epochs | |||
optimizer, scheduler = copy(optimizer), copy(scheduler) # do not modify originals | |||
y = [] | |||
for _ in range(epochs): | |||
scheduler.step() | |||
y.append(optimizer.param_groups[0]['lr']) | |||
plt.plot(y, '.-', label='LR') | |||
plt.xlabel('epoch') | |||
plt.ylabel('LR') | |||
plt.grid() | |||
plt.xlim(0, epochs) | |||
plt.ylim(0) | |||
plt.savefig(Path(save_dir) / 'LR.png', dpi=200) | |||
plt.close() | |||
def plot_test_txt(): # from utils.plots import *; plot_test() | |||
# Plot test.txt histograms | |||
x = np.loadtxt('test.txt', dtype=np.float32) | |||
box = xyxy2xywh(x[:, :4]) | |||
cx, cy = box[:, 0], box[:, 1] | |||
fig, ax = plt.subplots(1, 1, figsize=(6, 6), tight_layout=True) | |||
ax.hist2d(cx, cy, bins=600, cmax=10, cmin=0) | |||
ax.set_aspect('equal') | |||
plt.savefig('hist2d.png', dpi=300) | |||
fig, ax = plt.subplots(1, 2, figsize=(12, 6), tight_layout=True) | |||
ax[0].hist(cx, bins=600) | |||
ax[1].hist(cy, bins=600) | |||
plt.savefig('hist1d.png', dpi=200) | |||
def plot_targets_txt(): # from utils.plots import *; plot_targets_txt() | |||
# Plot targets.txt histograms | |||
x = np.loadtxt('targets.txt', dtype=np.float32).T | |||
s = ['x targets', 'y targets', 'width targets', 'height targets'] | |||
fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True) | |||
ax = ax.ravel() | |||
for i in range(4): | |||
ax[i].hist(x[i], bins=100, label='%.3g +/- %.3g' % (x[i].mean(), x[i].std())) | |||
ax[i].legend() | |||
ax[i].set_title(s[i]) | |||
plt.savefig('targets.jpg', dpi=200) | |||
def plot_study_txt(path='', x=None): # from utils.plots import *; plot_study_txt() | |||
# Plot study.txt generated by test.py | |||
fig, ax = plt.subplots(2, 4, figsize=(10, 6), tight_layout=True) | |||
# ax = ax.ravel() | |||
fig2, ax2 = plt.subplots(1, 1, figsize=(8, 4), tight_layout=True) | |||
# for f in [Path(path) / f'study_coco_{x}.txt' for x in ['yolov5s6', 'yolov5m6', 'yolov5l6', 'yolov5x6']]: | |||
for f in sorted(Path(path).glob('study*.txt')): | |||
y = np.loadtxt(f, dtype=np.float32, usecols=[0, 1, 2, 3, 7, 8, 9], ndmin=2).T | |||
x = np.arange(y.shape[1]) if x is None else np.array(x) | |||
s = ['P', 'R', 'mAP@.5', 'mAP@.5:.95', 't_inference (ms/img)', 't_NMS (ms/img)', 't_total (ms/img)'] | |||
# for i in range(7): | |||
# ax[i].plot(x, y[i], '.-', linewidth=2, markersize=8) | |||
# ax[i].set_title(s[i]) | |||
j = y[3].argmax() + 1 | |||
ax2.plot(y[6, 1:j], y[3, 1:j] * 1E2, '.-', linewidth=2, markersize=8, | |||
label=f.stem.replace('study_coco_', '').replace('yolo', 'YOLO')) | |||
ax2.plot(1E3 / np.array([209, 140, 97, 58, 35, 18]), [34.6, 40.5, 43.0, 47.5, 49.7, 51.5], | |||
'k.-', linewidth=2, markersize=8, alpha=.25, label='EfficientDet') | |||
ax2.grid(alpha=0.2) | |||
ax2.set_yticks(np.arange(20, 60, 5)) | |||
ax2.set_xlim(0, 57) | |||
ax2.set_ylim(30, 55) | |||
ax2.set_xlabel('GPU Speed (ms/img)') | |||
ax2.set_ylabel('COCO AP val') | |||
ax2.legend(loc='lower right') | |||
plt.savefig(str(Path(path).name) + '.png', dpi=300) | |||
def plot_labels(labels, names=(), save_dir=Path(''), loggers=None): | |||
# plot dataset labels | |||
print('Plotting labels... ') | |||
c, b = labels[:, 0], labels[:, 1:].transpose() # classes, boxes | |||
nc = int(c.max() + 1) # number of classes | |||
colors = color_list() | |||
x = pd.DataFrame(b.transpose(), columns=['x', 'y', 'width', 'height']) | |||
# seaborn correlogram | |||
sns.pairplot(x, corner=True, diag_kind='auto', kind='hist', diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9)) | |||
plt.savefig(save_dir / 'labels_correlogram.jpg', dpi=200) | |||
plt.close() | |||
# matplotlib labels | |||
matplotlib.use('svg') # faster | |||
ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel() | |||
ax[0].hist(c, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8) | |||
ax[0].set_ylabel('instances') | |||
if 0 < len(names) < 30: | |||
ax[0].set_xticks(range(len(names))) | |||
ax[0].set_xticklabels(names, rotation=90, fontsize=10) | |||
else: | |||
ax[0].set_xlabel('classes') | |||
sns.histplot(x, x='x', y='y', ax=ax[2], bins=50, pmax=0.9) | |||
sns.histplot(x, x='width', y='height', ax=ax[3], bins=50, pmax=0.9) | |||
# rectangles | |||
labels[:, 1:3] = 0.5 # center | |||
labels[:, 1:] = xywh2xyxy(labels[:, 1:]) * 2000 | |||
img = Image.fromarray(np.ones((2000, 2000, 3), dtype=np.uint8) * 255) | |||
for cls, *box in labels[:1000]: | |||
ImageDraw.Draw(img).rectangle(box, width=1, outline=colors[int(cls) % 10]) # plot | |||
ax[1].imshow(img) | |||
ax[1].axis('off') | |||
for a in [0, 1, 2, 3]: | |||
for s in ['top', 'right', 'left', 'bottom']: | |||
ax[a].spines[s].set_visible(False) | |||
plt.savefig(save_dir / 'labels.jpg', dpi=200) | |||
matplotlib.use('Agg') | |||
plt.close() | |||
# loggers | |||
for k, v in loggers.items() or {}: | |||
if k == 'wandb' and v: | |||
v.log({"Labels": [v.Image(str(x), caption=x.name) for x in save_dir.glob('*labels*.jpg')]}, commit=False) | |||
def plot_evolution(yaml_file='data/hyp.finetune.yaml'): # from utils.plots import *; plot_evolution() | |||
# Plot hyperparameter evolution results in evolve.txt | |||
with open(yaml_file) as f: | |||
hyp = yaml.load(f, Loader=yaml.SafeLoader) | |||
x = np.loadtxt('evolve.txt', ndmin=2) | |||
f = fitness(x) | |||
# weights = (f - f.min()) ** 2 # for weighted results | |||
plt.figure(figsize=(10, 12), tight_layout=True) | |||
matplotlib.rc('font', **{'size': 8}) | |||
for i, (k, v) in enumerate(hyp.items()): | |||
y = x[:, i + 7] | |||
# mu = (y * weights).sum() / weights.sum() # best weighted result | |||
mu = y[f.argmax()] # best single result | |||
plt.subplot(6, 5, i + 1) | |||
plt.scatter(y, f, c=hist2d(y, f, 20), cmap='viridis', alpha=.8, edgecolors='none') | |||
plt.plot(mu, f.max(), 'k+', markersize=15) | |||
plt.title('%s = %.3g' % (k, mu), fontdict={'size': 9}) # limit to 40 characters | |||
if i % 5 != 0: | |||
plt.yticks([]) | |||
print('%15s: %.3g' % (k, mu)) | |||
plt.savefig('evolve.png', dpi=200) | |||
print('\nPlot saved as evolve.png') | |||
def profile_idetection(start=0, stop=0, labels=(), save_dir=''): | |||
# Plot iDetection '*.txt' per-image logs. from utils.plots import *; profile_idetection() | |||
ax = plt.subplots(2, 4, figsize=(12, 6), tight_layout=True)[1].ravel() | |||
s = ['Images', 'Free Storage (GB)', 'RAM Usage (GB)', 'Battery', 'dt_raw (ms)', 'dt_smooth (ms)', 'real-world FPS'] | |||
files = list(Path(save_dir).glob('frames*.txt')) | |||
for fi, f in enumerate(files): | |||
try: | |||
results = np.loadtxt(f, ndmin=2).T[:, 90:-30] # clip first and last rows | |||
n = results.shape[1] # number of rows | |||
x = np.arange(start, min(stop, n) if stop else n) | |||
results = results[:, x] | |||
t = (results[0] - results[0].min()) # set t0=0s | |||
results[0] = x | |||
for i, a in enumerate(ax): | |||
if i < len(results): | |||
label = labels[fi] if len(labels) else f.stem.replace('frames_', '') | |||
a.plot(t, results[i], marker='.', label=label, linewidth=1, markersize=5) | |||
a.set_title(s[i]) | |||
a.set_xlabel('time (s)') | |||
# if fi == len(files) - 1: | |||
# a.set_ylim(bottom=0) | |||
for side in ['top', 'right']: | |||
a.spines[side].set_visible(False) | |||
else: | |||
a.remove() | |||
except Exception as e: | |||
print('Warning: Plotting error for %s; %s' % (f, e)) | |||
ax[1].legend() | |||
plt.savefig(Path(save_dir) / 'idetection_profile.png', dpi=200) | |||
def plot_results_overlay(start=0, stop=0): # from utils.plots import *; plot_results_overlay() | |||
# Plot training 'results*.txt', overlaying train and val losses | |||
s = ['train', 'train', 'train', 'Precision', 'mAP@0.5', 'val', 'val', 'val', 'Recall', 'mAP@0.5:0.95'] # legends | |||
t = ['Box', 'Objectness', 'Classification', 'P-R', 'mAP-F1'] # titles | |||
for f in sorted(glob.glob('results*.txt') + glob.glob('../../Downloads/results*.txt')): | |||
results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T | |||
n = results.shape[1] # number of rows | |||
x = range(start, min(stop, n) if stop else n) | |||
fig, ax = plt.subplots(1, 5, figsize=(14, 3.5), tight_layout=True) | |||
ax = ax.ravel() | |||
for i in range(5): | |||
for j in [i, i + 5]: | |||
y = results[j, x] | |||
ax[i].plot(x, y, marker='.', label=s[j]) | |||
# y_smooth = butter_lowpass_filtfilt(y) | |||
# ax[i].plot(x, np.gradient(y_smooth), marker='.', label=s[j]) | |||
ax[i].set_title(t[i]) | |||
ax[i].legend() | |||
ax[i].set_ylabel(f) if i == 0 else None # add filename | |||
fig.savefig(f.replace('.txt', '.png'), dpi=200) | |||
def plot_results(start=0, stop=0, bucket='', id=(), labels=(), save_dir=''): | |||
# Plot training 'results*.txt'. from utils.plots import *; plot_results(save_dir='runs/train/exp') | |||
fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True) | |||
ax = ax.ravel() | |||
s = ['Box', 'Objectness', 'Classification', 'Precision', 'Recall', | |||
'val Box', 'val Objectness', 'val Classification', 'mAP@0.5', 'mAP@0.5:0.95'] | |||
if bucket: | |||
# files = ['https://storage.googleapis.com/%s/results%g.txt' % (bucket, x) for x in id] | |||
files = ['results%g.txt' % x for x in id] | |||
c = ('gsutil cp ' + '%s ' * len(files) + '.') % tuple('gs://%s/results%g.txt' % (bucket, x) for x in id) | |||
os.system(c) | |||
else: | |||
files = list(Path(save_dir).glob('results*.txt')) | |||
assert len(files), 'No results.txt files found in %s, nothing to plot.' % os.path.abspath(save_dir) | |||
for fi, f in enumerate(files): | |||
try: | |||
results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T | |||
n = results.shape[1] # number of rows | |||
x = range(start, min(stop, n) if stop else n) | |||
for i in range(10): | |||
y = results[i, x] | |||
if i in [0, 1, 2, 5, 6, 7]: | |||
y[y == 0] = np.nan # don't show zero loss values | |||
# y /= y[0] # normalize | |||
label = labels[fi] if len(labels) else f.stem | |||
ax[i].plot(x, y, marker='.', label=label, linewidth=2, markersize=8) | |||
ax[i].set_title(s[i]) | |||
# if i in [5, 6, 7]: # share train and val loss y axes | |||
# ax[i].get_shared_y_axes().join(ax[i], ax[i - 5]) | |||
except Exception as e: | |||
print('Warning: Plotting error for %s; %s' % (f, e)) | |||
ax[1].legend() | |||
fig.savefig(Path(save_dir) / 'results.png', dpi=200) |
@@ -0,0 +1,303 @@ | |||
# YOLOv5 PyTorch utils | |||
import datetime | |||
import logging | |||
import math | |||
import os | |||
import platform | |||
import subprocess | |||
import time | |||
from contextlib import contextmanager | |||
from copy import deepcopy | |||
from pathlib import Path | |||
import torch | |||
import torch.backends.cudnn as cudnn | |||
import torch.nn as nn | |||
import torch.nn.functional as F | |||
import torchvision | |||
try: | |||
import thop # for FLOPS computation | |||
except ImportError: | |||
thop = None | |||
logger = logging.getLogger(__name__) | |||
@contextmanager | |||
def torch_distributed_zero_first(local_rank: int): | |||
""" | |||
Decorator to make all processes in distributed training wait for each local_master to do something. | |||
""" | |||
if local_rank not in [-1, 0]: | |||
torch.distributed.barrier() | |||
yield | |||
if local_rank == 0: | |||
torch.distributed.barrier() | |||
def init_torch_seeds(seed=0): | |||
# Speed-reproducibility tradeoff https://pytorch.org/docs/stable/notes/randomness.html | |||
torch.manual_seed(seed) | |||
if seed == 0: # slower, more reproducible | |||
cudnn.benchmark, cudnn.deterministic = False, True | |||
else: # faster, less reproducible | |||
cudnn.benchmark, cudnn.deterministic = True, False | |||
def date_modified(path=__file__): | |||
# return human-readable file modification date, i.e. '2021-3-26' | |||
t = datetime.datetime.fromtimestamp(Path(path).stat().st_mtime) | |||
return f'{t.year}-{t.month}-{t.day}' | |||
def git_describe(path=Path(__file__).parent): # path must be a directory | |||
# return human-readable git description, i.e. v5.0-5-g3e25f1e https://git-scm.com/docs/git-describe | |||
s = f'git -C {path} describe --tags --long --always' | |||
try: | |||
return subprocess.check_output(s, shell=True, stderr=subprocess.STDOUT).decode()[:-1] | |||
except subprocess.CalledProcessError as e: | |||
return '' # not a git repository | |||
def select_device(device='', batch_size=None): | |||
# device = 'cpu' or '0' or '0,1,2,3' | |||
s = f'YOLOv5 🚀 {git_describe() or date_modified()} torch {torch.__version__} ' # string | |||
cpu = device.lower() == 'cpu' | |||
if cpu: | |||
os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # force torch.cuda.is_available() = False | |||
elif device: # non-cpu device requested | |||
os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable | |||
assert torch.cuda.is_available(), f'CUDA unavailable, invalid device {device} requested' # check availability | |||
cuda = not cpu and torch.cuda.is_available() | |||
if cuda: | |||
n = torch.cuda.device_count() | |||
if n > 1 and batch_size: # check that batch_size is compatible with device_count | |||
assert batch_size % n == 0, f'batch-size {batch_size} not multiple of GPU count {n}' | |||
space = ' ' * len(s) | |||
for i, d in enumerate(device.split(',') if device else range(n)): | |||
p = torch.cuda.get_device_properties(i) | |||
s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / 1024 ** 2}MB)\n" # bytes to MB | |||
else: | |||
s += 'CPU\n' | |||
logger.info(s.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else s) # emoji-safe | |||
return torch.device('cuda:0' if cuda else 'cpu') | |||
def time_synchronized(): | |||
# pytorch-accurate time | |||
if torch.cuda.is_available(): | |||
torch.cuda.synchronize() | |||
return time.time() | |||
def profile(x, ops, n=100, device=None): | |||
# profile a pytorch module or list of modules. Example usage: | |||
# x = torch.randn(16, 3, 640, 640) # input | |||
# m1 = lambda x: x * torch.sigmoid(x) | |||
# m2 = nn.SiLU() | |||
# profile(x, [m1, m2], n=100) # profile speed over 100 iterations | |||
device = device or torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') | |||
x = x.to(device) | |||
x.requires_grad = True | |||
print(torch.__version__, device.type, torch.cuda.get_device_properties(0) if device.type == 'cuda' else '') | |||
print(f"\n{'Params':>12s}{'GFLOPS':>12s}{'forward (ms)':>16s}{'backward (ms)':>16s}{'input':>24s}{'output':>24s}") | |||
for m in ops if isinstance(ops, list) else [ops]: | |||
m = m.to(device) if hasattr(m, 'to') else m # device | |||
m = m.half() if hasattr(m, 'half') and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m # type | |||
dtf, dtb, t = 0., 0., [0., 0., 0.] # dt forward, backward | |||
try: | |||
flops = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 # GFLOPS | |||
except: | |||
flops = 0 | |||
for _ in range(n): | |||
t[0] = time_synchronized() | |||
y = m(x) | |||
t[1] = time_synchronized() | |||
try: | |||
_ = y.sum().backward() | |||
t[2] = time_synchronized() | |||
except: # no backward method | |||
t[2] = float('nan') | |||
dtf += (t[1] - t[0]) * 1000 / n # ms per op forward | |||
dtb += (t[2] - t[1]) * 1000 / n # ms per op backward | |||
s_in = tuple(x.shape) if isinstance(x, torch.Tensor) else 'list' | |||
s_out = tuple(y.shape) if isinstance(y, torch.Tensor) else 'list' | |||
p = sum(list(x.numel() for x in m.parameters())) if isinstance(m, nn.Module) else 0 # parameters | |||
print(f'{p:12}{flops:12.4g}{dtf:16.4g}{dtb:16.4g}{str(s_in):>24s}{str(s_out):>24s}') | |||
def is_parallel(model): | |||
return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel) | |||
def intersect_dicts(da, db, exclude=()): | |||
# Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values | |||
return {k: v for k, v in da.items() if k in db and not any(x in k for x in exclude) and v.shape == db[k].shape} | |||
def initialize_weights(model): | |||
for m in model.modules(): | |||
t = type(m) | |||
if t is nn.Conv2d: | |||
pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') | |||
elif t is nn.BatchNorm2d: | |||
m.eps = 1e-3 | |||
m.momentum = 0.03 | |||
elif t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6]: | |||
m.inplace = True | |||
def find_modules(model, mclass=nn.Conv2d): | |||
# Finds layer indices matching module class 'mclass' | |||
return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)] | |||
def sparsity(model): | |||
# Return global model sparsity | |||
a, b = 0., 0. | |||
for p in model.parameters(): | |||
a += p.numel() | |||
b += (p == 0).sum() | |||
return b / a | |||
def prune(model, amount=0.3): | |||
# Prune model to requested global sparsity | |||
import torch.nn.utils.prune as prune | |||
print('Pruning model... ', end='') | |||
for name, m in model.named_modules(): | |||
if isinstance(m, nn.Conv2d): | |||
prune.l1_unstructured(m, name='weight', amount=amount) # prune | |||
prune.remove(m, 'weight') # make permanent | |||
print(' %.3g global sparsity' % sparsity(model)) | |||
def fuse_conv_and_bn(conv, bn): | |||
# Fuse convolution and batchnorm layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/ | |||
fusedconv = nn.Conv2d(conv.in_channels, | |||
conv.out_channels, | |||
kernel_size=conv.kernel_size, | |||
stride=conv.stride, | |||
padding=conv.padding, | |||
groups=conv.groups, | |||
bias=True).requires_grad_(False).to(conv.weight.device) | |||
# prepare filters | |||
w_conv = conv.weight.clone().view(conv.out_channels, -1) | |||
w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var))) | |||
fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.shape)) | |||
# prepare spatial bias | |||
b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias | |||
b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps)) | |||
fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn) | |||
return fusedconv | |||
def model_info(model, verbose=False, img_size=640): | |||
# Model information. img_size may be int or list, i.e. img_size=640 or img_size=[640, 320] | |||
n_p = sum(x.numel() for x in model.parameters()) # number parameters | |||
n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients | |||
if verbose: | |||
print('%5s %40s %9s %12s %20s %10s %10s' % ('layer', 'name', 'gradient', 'parameters', 'shape', 'mu', 'sigma')) | |||
for i, (name, p) in enumerate(model.named_parameters()): | |||
name = name.replace('module_list.', '') | |||
print('%5g %40s %9s %12g %20s %10.3g %10.3g' % | |||
(i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std())) | |||
try: # FLOPS | |||
from thop import profile | |||
stride = max(int(model.stride.max()), 32) if hasattr(model, 'stride') else 32 | |||
img = torch.zeros((1, model.yaml.get('ch', 3), stride, stride), device=next(model.parameters()).device) # input | |||
flops = profile(deepcopy(model), inputs=(img,), verbose=False)[0] / 1E9 * 2 # stride GFLOPS | |||
img_size = img_size if isinstance(img_size, list) else [img_size, img_size] # expand if int/float | |||
fs = ', %.1f GFLOPS' % (flops * img_size[0] / stride * img_size[1] / stride) # 640x640 GFLOPS | |||
except (ImportError, Exception): | |||
fs = '' | |||
logger.info(f"Model Summary: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}") | |||
def load_classifier(name='resnet101', n=2): | |||
# Loads a pretrained model reshaped to n-class output | |||
model = torchvision.models.__dict__[name](pretrained=True) | |||
# ResNet model properties | |||
# input_size = [3, 224, 224] | |||
# input_space = 'RGB' | |||
# input_range = [0, 1] | |||
# mean = [0.485, 0.456, 0.406] | |||
# std = [0.229, 0.224, 0.225] | |||
# Reshape output to n classes | |||
filters = model.fc.weight.shape[1] | |||
model.fc.bias = nn.Parameter(torch.zeros(n), requires_grad=True) | |||
model.fc.weight = nn.Parameter(torch.zeros(n, filters), requires_grad=True) | |||
model.fc.out_features = n | |||
return model | |||
def scale_img(img, ratio=1.0, same_shape=False, gs=32): # img(16,3,256,416) | |||
# scales img(bs,3,y,x) by ratio constrained to gs-multiple | |||
if ratio == 1.0: | |||
return img | |||
else: | |||
h, w = img.shape[2:] | |||
s = (int(h * ratio), int(w * ratio)) # new size | |||
img = F.interpolate(img, size=s, mode='bilinear', align_corners=False) # resize | |||
if not same_shape: # pad/crop img | |||
h, w = [math.ceil(x * ratio / gs) * gs for x in (h, w)] | |||
return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean | |||
def copy_attr(a, b, include=(), exclude=()): | |||
# Copy attributes from b to a, options to only include [...] and to exclude [...] | |||
for k, v in b.__dict__.items(): | |||
if (len(include) and k not in include) or k.startswith('_') or k in exclude: | |||
continue | |||
else: | |||
setattr(a, k, v) | |||
class ModelEMA: | |||
""" Model Exponential Moving Average from https://github.com/rwightman/pytorch-image-models | |||
Keep a moving average of everything in the model state_dict (parameters and buffers). | |||
This is intended to allow functionality like | |||
https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage | |||
A smoothed version of the weights is necessary for some training schemes to perform well. | |||
This class is sensitive where it is initialized in the sequence of model init, | |||
GPU assignment and distributed training wrappers. | |||
""" | |||
def __init__(self, model, decay=0.9999, updates=0): | |||
# Create EMA | |||
self.ema = deepcopy(model.module if is_parallel(model) else model).eval() # FP32 EMA | |||
# if next(model.parameters()).device.type != 'cpu': | |||
# self.ema.half() # FP16 EMA | |||
self.updates = updates # number of EMA updates | |||
self.decay = lambda x: decay * (1 - math.exp(-x / 2000)) # decay exponential ramp (to help early epochs) | |||
for p in self.ema.parameters(): | |||
p.requires_grad_(False) | |||
def update(self, model): | |||
# Update EMA parameters | |||
with torch.no_grad(): | |||
self.updates += 1 | |||
d = self.decay(self.updates) | |||
msd = model.module.state_dict() if is_parallel(model) else model.state_dict() # model state_dict | |||
for k, v in self.ema.state_dict().items(): | |||
if v.dtype.is_floating_point: | |||
v *= d | |||
v += (1. - d) * msd[k].detach() | |||
def update_attr(self, model, include=(), exclude=('process_group', 'reducer')): | |||
# Update EMA attributes | |||
copy_attr(self.ema, model, include, exclude) |