|
|
@@ -4,13 +4,10 @@ This is the implementation of DMPR-PS using PyTorch. |
|
|
|
|
|
|
|
## Requirements |
|
|
|
|
|
|
|
* CUDA |
|
|
|
* PyTorch |
|
|
|
* OpenCV |
|
|
|
* NumPy |
|
|
|
* Pillow |
|
|
|
* Visdom (optional) |
|
|
|
* Matplotlib (optional) |
|
|
|
* CUDA (optional) |
|
|
|
* Other requirements |
|
|
|
`pip install -r requirements.txt` |
|
|
|
|
|
|
|
## Pre-trained weights |
|
|
|
|
|
|
@@ -30,8 +27,8 @@ The [pre-trained weights](https://drive.google.com/open?id=1OuyF8bGttA11-CKJ4Mj3 |
|
|
|
python inference.py --mode video --detector_weights $DETECTOR_WEIGHTS --video $VIDEO |
|
|
|
``` |
|
|
|
|
|
|
|
`DETECTOR_WEIGHTS` is the trained weights of detector. |
|
|
|
`VIDEO` is path to the video. |
|
|
|
Argument `DETECTOR_WEIGHTS` is the trained weights of detector. |
|
|
|
Argument `VIDEO` is path to the video. |
|
|
|
View `config.py` for more argument details. |
|
|
|
|
|
|
|
## Prepare data |
|
|
@@ -45,9 +42,9 @@ The [pre-trained weights](https://drive.google.com/open?id=1OuyF8bGttA11-CKJ4Mj3 |
|
|
|
python prepare_dataset.py --dataset test --label_directory $LABEL_DIRECTORY --image_directory $IMAGE_DIRECTORY --output_directory $OUTPUT_DIRECTORY |
|
|
|
``` |
|
|
|
|
|
|
|
`LABEL_DIRECTORY` is the directory containing json labels. |
|
|
|
`IMAGE_DIRECTORY` is the directory containing jpg images. |
|
|
|
`OUTPUT_DIRECTORY` is the directory where output images and labels are. |
|
|
|
Argument `LABEL_DIRECTORY` is the directory containing json labels. |
|
|
|
Argument `IMAGE_DIRECTORY` is the directory containing jpg images. |
|
|
|
Argument `OUTPUT_DIRECTORY` is the directory where output images and labels are. |
|
|
|
View `prepare_dataset.py` for more argument details. |
|
|
|
|
|
|
|
## Train |
|
|
@@ -56,7 +53,7 @@ The [pre-trained weights](https://drive.google.com/open?id=1OuyF8bGttA11-CKJ4Mj3 |
|
|
|
python train.py --dataset_directory $TRAIN_DIRECTORY |
|
|
|
``` |
|
|
|
|
|
|
|
`TRAIN_DIRECTORY` is the train directory generated in data preparation. |
|
|
|
Argument `TRAIN_DIRECTORY` is the train directory generated in data preparation. |
|
|
|
View `config.py` for more argument details (batch size, learning rate, etc). |
|
|
|
|
|
|
|
## Evaluate |
|
|
@@ -67,8 +64,8 @@ View `config.py` for more argument details (batch size, learning rate, etc). |
|
|
|
python evaluate.py --dataset_directory $TEST_DIRECTORY --detector_weights $DETECTOR_WEIGHTS |
|
|
|
``` |
|
|
|
|
|
|
|
`TEST_DIRECTORY` is the test directory generated in data preparation. |
|
|
|
`DETECTOR_WEIGHTS` is the trained weights of detector. |
|
|
|
Argument `TEST_DIRECTORY` is the test directory generated in data preparation. |
|
|
|
Argument `DETECTOR_WEIGHTS` is the trained weights of detector. |
|
|
|
View `config.py` for more argument details (batch size, learning rate, etc). |
|
|
|
|
|
|
|
* Evaluate parking-slot detection |
|
|
@@ -77,7 +74,22 @@ View `config.py` for more argument details (batch size, learning rate, etc). |
|
|
|
python ps_evaluate.py --label_directory $LABEL_DIRECTORY --image_directory $IMAGE_DIRECTORY --detector_weights $DETECTOR_WEIGHTS |
|
|
|
``` |
|
|
|
|
|
|
|
`LABEL_DIRECTORY` is the directory containing testing json labels. |
|
|
|
`IMAGE_DIRECTORY` is the directory containing testing jpg images. |
|
|
|
`DETECTOR_WEIGHTS` is the trained weights of detector. |
|
|
|
Argument `LABEL_DIRECTORY` is the directory containing testing json labels. |
|
|
|
Argument `IMAGE_DIRECTORY` is the directory containing testing jpg images. |
|
|
|
Argument `DETECTOR_WEIGHTS` is the trained weights of detector. |
|
|
|
View `config.py` for more argument details. |
|
|
|
|
|
|
|
## Citing DMPR-PS |
|
|
|
|
|
|
|
If you find DMPR-PS useful in your research, please consider citing: |
|
|
|
|
|
|
|
```() |
|
|
|
@inproceedings{DMPR-PS, |
|
|
|
Author = {Junhao Huang and Lin Zhang and Ying Shen and Huijuan Zhang and Shengjie Zhao and Yukai Yang}, |
|
|
|
Booktitle = {2019 IEEE International Conference on Multimedia and Expo (ICME)}, |
|
|
|
Title = {{DMPR-PS}: A novel approach for parking-slot detection using directional marking-point regression}, |
|
|
|
Month = {Jul.}, |
|
|
|
Year = {2019}, |
|
|
|
Pages = {212-217} |
|
|
|
} |
|
|
|
``` |