"""Configurate arguments.""" import argparse INPUT_IMAGE_SIZE = 512 # 0: confidence, 1: point_shape, 2: offset_x, 3: offset_y, 4: cos(direction), # 5: sin(direction) NUM_FEATURE_MAP_CHANNEL = 6 # image_size / 2^5 = 512 / 32 = 16 FEATURE_MAP_SIZE = 16 # Threshold used to filter marking points too close to image boundary BOUNDARY_THRESH = 0.066666667 # Thresholds to determine whether an detected point match ground truth. SQUARED_DISTANCE_THRESH = 0.000277778 DIRECTION_ANGLE_THRESH = 0.5 VSLOT_MIN_DISTANCE = 0.044771278151623496 VSLOT_MAX_DISTANCE = 0.1099427457599304 HSLOT_MIN_DISTANCE = 0.15057789144568634 HSLOT_MAX_DISTANCE = 0.44449496544202816 BRIDGE_ANGLE_DIFF = 0.25 SEPARATOR_ANGLE_DIFF = 0.5 SLOT_SUPPRESSION_DOT_PRODUCT_THRESH = 0.8 def add_common_arguments(parser): """Add common arguments for training and inference.""" parser.add_argument('--detector_weights', help="The weights of pretrained detector.") parser.add_argument('--depth_factor', type=int, default=32, help="Depth factor.") parser.add_argument('--disable_cuda', action='store_true', help="Disable CUDA.") parser.add_argument('--gpu_id', type=int, default=0, help="Select which gpu to use.") def get_parser_for_training(): """Return argument parser for training.""" parser = argparse.ArgumentParser() parser.add_argument('--dataset_directory', required=True, help="The location of dataset.") parser.add_argument('--optimizer_weights', help="The weights of optimizer.") parser.add_argument('--batch_size', type=int, default=24, help="Batch size.") parser.add_argument('--data_loading_workers', type=int, default=32, help="Number of workers for data loading.") parser.add_argument('--num_epochs', type=int, default=10, help="Number of epochs to train for.") parser.add_argument('--lr', type=float, default=1e-4, help="The learning rate of back propagation.") parser.add_argument('--enable_visdom', action='store_true', help="Enable Visdom to visualize training progress") add_common_arguments(parser) return parser def get_parser_for_evaluation(): """Return argument parser for testing.""" parser = argparse.ArgumentParser() parser.add_argument('--dataset_directory', required=True, help="The location of dataset.") parser.add_argument('--batch_size', type=int, default=32, help="Batch size.") parser.add_argument('--data_loading_workers', type=int, default=64, help="Number of workers for data loading.") parser.add_argument('--enable_visdom', action='store_true', help="Enable Visdom to visualize training progress") add_common_arguments(parser) return parser def get_parser_for_ps_evaluation(): """Return argument parser for testing.""" parser = argparse.ArgumentParser() parser.add_argument('--label_directory', required=True, help="The location of dataset.") parser.add_argument('--image_directory', required=True, help="The location of dataset.") parser.add_argument('--enable_visdom', action='store_true', help="Enable Visdom to visualize training progress") add_common_arguments(parser) return parser def get_parser_for_inference(): """Return argument parser for inference.""" parser = argparse.ArgumentParser() parser.add_argument('--mode', required=True, choices=['image', 'video'], help="Inference image or video.") parser.add_argument('--video', help="Video path if you choose to inference video.") parser.add_argument('--inference_slot', action='store_true', help="Perform slot inference.") parser.add_argument('--thresh', type=float, default=0.5, help="Detection threshold.") parser.add_argument('--save', action='store_true', help="Save detection result to file.") add_common_arguments(parser) return parser