车位角点检测代码
No puede seleccionar más de 25 temas Los temas deben comenzar con una letra o número, pueden incluir guiones ('-') y pueden tener hasta 35 caracteres de largo.

61 líneas
2.3KB

  1. """Evaluate directional marking point detector."""
  2. import torch
  3. from torch.utils.data import DataLoader
  4. import config
  5. import util
  6. from data import get_predicted_points, match_marking_points
  7. from data import ParkingSlotDataset
  8. from model import DirectionalPointDetector
  9. from train import generate_objective
  10. def evaluate_detector(args):
  11. """Evaluate directional point detector."""
  12. args.cuda = not args.disable_cuda and torch.cuda.is_available()
  13. device = torch.device('cuda:' + str(args.gpu_id) if args.cuda else 'cpu')
  14. torch.set_grad_enabled(False)
  15. dp_detector = DirectionalPointDetector(
  16. 3, args.depth_factor, config.NUM_FEATURE_MAP_CHANNEL).to(device)
  17. if args.detector_weights:
  18. dp_detector.load_state_dict(torch.load(args.detector_weights))
  19. dp_detector.eval()
  20. torch.multiprocessing.set_sharing_strategy('file_system')
  21. data_loader = DataLoader(ParkingSlotDataset(args.dataset_directory),
  22. batch_size=args.batch_size, shuffle=True,
  23. num_workers=args.data_loading_workers,
  24. collate_fn=lambda x: list(zip(*x)))
  25. logger = util.Logger(enable_visdom=args.enable_visdom)
  26. total_loss = 0
  27. num_evaluation = 0
  28. ground_truths_list = []
  29. predictions_list = []
  30. for iter_idx, (image, marking_points) in enumerate(data_loader):
  31. image = torch.stack(image)
  32. image = image.to(device)
  33. ground_truths_list += list(marking_points)
  34. prediction = dp_detector(image)
  35. objective, gradient = generate_objective(marking_points, device)
  36. loss = (prediction - objective) ** 2
  37. total_loss += torch.sum(loss*gradient).item()
  38. num_evaluation += loss.size(0)
  39. pred_points = [get_predicted_points(pred, 0.01) for pred in prediction]
  40. predictions_list += pred_points
  41. logger.log(iter=iter_idx, total_loss=total_loss)
  42. precisions, recalls = util.calc_precision_recall(
  43. ground_truths_list, predictions_list, match_marking_points)
  44. average_precision = util.calc_average_precision(precisions, recalls)
  45. if args.enable_visdom:
  46. logger.plot_curve(precisions, recalls)
  47. logger.log(average_loss=total_loss / num_evaluation,
  48. average_precision=average_precision)
  49. if __name__ == '__main__':
  50. evaluate_detector(config.get_parser_for_evaluation().parse_args())