nyh 27ad67f60a 2 | vor 10 Monaten | |
---|---|---|
data | vor 10 Monaten | |
model | vor 5 Jahren | |
models | vor 10 Monaten | |
util | vor 5 Jahren | |
utils | vor 10 Monaten | |
.gitignore | vor 6 Jahren | |
DMPR-PS.pdf | vor 2 Jahren | |
LICENSE | vor 5 Jahren | |
README.md | vor 2 Jahren | |
collect_thresholds.py | vor 6 Jahren | |
config.py | vor 10 Monaten | |
evaluate.py | vor 4 Jahren | |
inference.py | vor 5 Jahren | |
prepare_dataset.py | vor 6 Jahren | |
ps_evaluate.py | vor 4 Jahren | |
requirements.txt | vor 4 Jahren | |
train.py | vor 10 Monaten |
This is the implementation of DMPR-PS using PyTorch.
pip install -r requirements.txt
The pre-trained weights could be used to reproduce the number in the paper.
Image inference
python inference.py --mode image --detector_weights $DETECTOR_WEIGHTS --inference_slot
Video inference
python inference.py --mode video --detector_weights $DETECTOR_WEIGHTS --video $VIDEO --inference_slot
Argument DETECTOR_WEIGHTS
is the trained weights of detector.
Argument VIDEO
is path to the video.
View config.py
for more argument details.
directional_point
branch of my labeling tool MarkToolForParkingLotPoint.)Perform data preparation and augmentation:
python prepare_dataset.py --dataset trainval --label_directory $LABEL_DIRECTORY --image_directory $IMAGE_DIRECTORY --output_directory $OUTPUT_DIRECTORY
python prepare_dataset.py --dataset test --label_directory $LABEL_DIRECTORY --image_directory $IMAGE_DIRECTORY --output_directory $OUTPUT_DIRECTORY
Argument LABEL_DIRECTORY
is the directory containing json labels.
Argument IMAGE_DIRECTORY
is the directory containing jpg images.
Argument OUTPUT_DIRECTORY
is the directory where output images and labels are.
View prepare_dataset.py
for more argument details.
python train.py --dataset_directory $TRAIN_DIRECTORY
Argument TRAIN_DIRECTORY
is the train directory generated in data preparation.
View config.py
for more argument details (batch size, learning rate, etc).
Evaluate directional marking-point detection
python evaluate.py --dataset_directory $TEST_DIRECTORY --detector_weights $DETECTOR_WEIGHTS
Argument TEST_DIRECTORY
is the test directory generated in data preparation.
Argument DETECTOR_WEIGHTS
is the trained weights of detector.
View config.py
for more argument details (batch size, learning rate, etc).
Evaluate parking-slot detection
python ps_evaluate.py --label_directory $LABEL_DIRECTORY --image_directory $IMAGE_DIRECTORY --detector_weights $DETECTOR_WEIGHTS
Argument LABEL_DIRECTORY
is the directory containing testing json labels.
Argument IMAGE_DIRECTORY
is the directory containing testing jpg images.
Argument DETECTOR_WEIGHTS
is the trained weights of detector.
View config.py
for more argument details.
If you find DMPR-PS useful in your research, please consider citing:
@inproceedings{DMPR-PS,
Author = {Junhao Huang and Lin Zhang and Ying Shen and Huijuan Zhang and Shengjie Zhao and Yukai Yang},
Booktitle = {2019 IEEE International Conference on Multimedia and Expo (ICME)},
Title = {{DMPR-PS}: A novel approach for parking-slot detection using directional marking-point regression},
Month = {Jul.},
Year = {2019},
Pages = {212-217}
}