@@ -0,0 +1,284 @@ | |||
# YOLOv5 YOLO-specific modules | |||
import argparse | |||
import logging | |||
import sys | |||
from copy import deepcopy | |||
import torch | |||
sys.path.append('./') # to run '$ python *.py' files in subdirectories | |||
logger = logging.getLogger(__name__) | |||
from models.common import * | |||
from models.experimental import * | |||
from utils.autoanchor import check_anchor_order | |||
from utils.general import make_divisible, check_file, set_logging | |||
from utils.torch_utils import time_synchronized, fuse_conv_and_bn, model_info, scale_img, initialize_weights, \ | |||
select_device, copy_attr | |||
try: | |||
import thop # for FLOPS computation | |||
except ImportError: | |||
thop = None | |||
class Detect(nn.Module): | |||
stride = None # strides computed during build | |||
export = False # onnx export | |||
def __init__(self, nc=80, anchors=(), ch=()): # detection layers | |||
super(Detect, self).__init__() | |||
self.no = 6 | |||
self.nl = 3 | |||
self.na = len(anchors[0]) // 2 # number of anchors | |||
self.grid = [torch.zeros(1)] * self.nl # init grid | |||
a = torch.tensor(anchors).float().view(self.nl, -1, 2) | |||
self.register_buffer('anchors', a) # shape(nl,na,2) | |||
self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2) | |||
self.m = nn.ModuleList(nn.Conv2d(x, self.no, 1) for x in ch) # output conv | |||
def forward(self, x): | |||
# x = x.copy() # for profiling | |||
# z = [] # inference output | |||
# # self.training |= self.export | |||
# for i in range(self.nl): | |||
# x[i] = self.m[i](x[i]) # conv | |||
# bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85) | |||
# x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous() | |||
# | |||
# if not self.training: # inference | |||
# if self.grid[i].shape[2:4] != x[i].shape[2:4]: | |||
# self.grid[i] = self._make_grid(nx, ny).to(x[i].device) | |||
# | |||
# y = x[i].sigmoid() | |||
# y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy | |||
# y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh | |||
# z.append(y.view(bs, -1, self.no)) | |||
prediction = self.m[1](x[1]) | |||
point_pred, angle_pred = torch.split(prediction, 4, dim=1) | |||
point_pred = torch.sigmoid(point_pred) | |||
angle_pred = torch.tanh(angle_pred) | |||
return torch.cat((point_pred, angle_pred), dim=1) | |||
@staticmethod | |||
def _make_grid(nx=20, ny=20): | |||
yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)]) | |||
return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float() | |||
class Model(nn.Module): | |||
def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None): # model, input channels, number of classes | |||
super(Model, self).__init__() | |||
if isinstance(cfg, dict): | |||
self.yaml = cfg # model dict | |||
else: # is *.yaml | |||
import yaml # for torch hub | |||
self.yaml_file = Path(cfg).name | |||
with open(cfg) as f: | |||
self.yaml = yaml.load(f, Loader=yaml.SafeLoader) # model dict | |||
# Define model | |||
ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels | |||
if nc and nc != self.yaml['nc']: | |||
logger.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}") | |||
self.yaml['nc'] = nc # override yaml value | |||
if anchors: | |||
logger.info(f'Overriding model.yaml anchors with anchors={anchors}') | |||
self.yaml['anchors'] = round(anchors) # override yaml value | |||
self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist | |||
self.names = [str(i) for i in range(self.yaml['nc'])] # default names | |||
# print([x.shape for x in self.forward(torch.zeros(1, ch, 64, 64))]) | |||
# Build strides, anchors | |||
# m = self.model[-1] # Detect() | |||
# if isinstance(m, Detect): | |||
# s = 256 # 2x min stride | |||
# m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward | |||
# m.anchors /= m.stride.view(-1, 1, 1) | |||
# check_anchor_order(m) | |||
# self.stride = m.stride | |||
# self._initialize_biases() # only run once | |||
# print('Strides: %s' % m.stride.tolist()) | |||
# Init weights, biases | |||
initialize_weights(self) | |||
self.info() | |||
logger.info('') | |||
def forward(self, x, augment=False, profile=False): | |||
if augment: | |||
img_size = x.shape[-2:] # height, width | |||
s = [1, 0.83, 0.67] # scales | |||
f = [None, 3, None] # flips (2-ud, 3-lr) | |||
y = [] # outputs | |||
for si, fi in zip(s, f): | |||
xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max())) | |||
yi = self.forward_once(xi)[0] # forward | |||
# cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # save | |||
yi[..., :4] /= si # de-scale | |||
if fi == 2: | |||
yi[..., 1] = img_size[0] - yi[..., 1] # de-flip ud | |||
elif fi == 3: | |||
yi[..., 0] = img_size[1] - yi[..., 0] # de-flip lr | |||
y.append(yi) | |||
return torch.cat(y, 1), None # augmented inference, train | |||
else: | |||
return self.forward_once(x, profile) # single-scale inference, train | |||
def forward_once(self, x, profile=False): | |||
y, dt = [], [] # outputs | |||
for m in self.model: | |||
if m.f != -1: # if not from previous layer | |||
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers | |||
if profile: | |||
o = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPS | |||
t = time_synchronized() | |||
for _ in range(10): | |||
_ = m(x) | |||
dt.append((time_synchronized() - t) * 100) | |||
print('%10.1f%10.0f%10.1fms %-40s' % (o, m.np, dt[-1], m.type)) | |||
x = m(x) # run | |||
y.append(x if m.i in self.save else None) # save output | |||
if profile: | |||
print('%.1fms total' % sum(dt)) | |||
return x | |||
def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency | |||
# https://arxiv.org/abs/1708.02002 section 3.3 | |||
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1. | |||
m = self.model[-1] # Detect() module | |||
for mi, s in zip(m.m, m.stride): # from | |||
b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85) | |||
b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image) | |||
b.data[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls | |||
mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True) | |||
def _print_biases(self): | |||
m = self.model[-1] # Detect() module | |||
for mi in m.m: # from | |||
b = mi.bias.detach().view(m.na, -1).T # conv.bias(255) to (3,85) | |||
print(('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean())) | |||
# def _print_weights(self): | |||
# for m in self.model.modules(): | |||
# if type(m) is Bottleneck: | |||
# print('%10.3g' % (m.w.detach().sigmoid() * 2)) # shortcut weights | |||
def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers | |||
print('Fusing layers... ') | |||
for m in self.model.modules(): | |||
if type(m) is Conv and hasattr(m, 'bn'): | |||
m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv | |||
delattr(m, 'bn') # remove batchnorm | |||
m.forward = m.fuseforward # update forward | |||
self.info() | |||
return self | |||
def nms(self, mode=True): # add or remove NMS module | |||
present = type(self.model[-1]) is NMS # last layer is NMS | |||
if mode and not present: | |||
print('Adding NMS... ') | |||
m = NMS() # module | |||
m.f = -1 # from | |||
m.i = self.model[-1].i + 1 # index | |||
self.model.add_module(name='%s' % m.i, module=m) # add | |||
self.eval() | |||
elif not mode and present: | |||
print('Removing NMS... ') | |||
self.model = self.model[:-1] # remove | |||
return self | |||
def autoshape(self): # add autoShape module | |||
print('Adding autoShape... ') | |||
m = autoShape(self) # wrap model | |||
copy_attr(m, self, include=('yaml', 'nc', 'hyp', 'names', 'stride'), exclude=()) # copy attributes | |||
return m | |||
def info(self, verbose=False, img_size=640): # print model information | |||
model_info(self, verbose, img_size) | |||
def parse_model(d, ch): # model_dict, input_channels(3) | |||
logger.info('\n%3s%18s%3s%10s %-40s%-30s' % ('', 'from', 'n', 'params', 'module', 'arguments')) | |||
anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple'] | |||
na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors | |||
# no = na * (nc + 5) # number of outputs = anchors * (classes + 5) | |||
no = 6 | |||
layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out | |||
for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args | |||
m = eval(m) if isinstance(m, str) else m # eval strings | |||
for j, a in enumerate(args): | |||
try: | |||
args[j] = eval(a) if isinstance(a, str) else a # eval strings | |||
except: | |||
pass | |||
n = max(round(n * gd), 1) if n > 1 else n # depth gain | |||
if m in [Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP, | |||
C3, C3TR]: | |||
c1, c2 = ch[f], args[0] | |||
if c2 != no: # if not output | |||
c2 = make_divisible(c2 * gw, 8) | |||
args = [c1, c2, *args[1:]] | |||
if m in [BottleneckCSP, C3, C3TR]: | |||
args.insert(2, n) # number of repeats | |||
n = 1 | |||
elif m is nn.BatchNorm2d: | |||
args = [ch[f]] | |||
elif m is Concat: | |||
c2 = sum([ch[x] for x in f]) | |||
elif m is Detect: | |||
args.append([ch[x] for x in f]) | |||
if isinstance(args[1], int): # number of anchors | |||
args[1] = [list(range(args[1] * 2))] * len(f) | |||
elif m is Contract: | |||
c2 = ch[f] * args[0] ** 2 | |||
elif m is Expand: | |||
c2 = ch[f] // args[0] ** 2 | |||
else: | |||
c2 = ch[f] | |||
m_ = nn.Sequential(*[m(*args) for _ in range(n)]) if n > 1 else m(*args) # module | |||
t = str(m)[8:-2].replace('__main__.', '') # module type | |||
np = sum([x.numel() for x in m_.parameters()]) # number params | |||
m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params | |||
logger.info('%3s%18s%3s%10.0f %-40s%-30s' % (i, f, n, np, t, args)) # print | |||
save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist | |||
layers.append(m_) | |||
if i == 0: | |||
ch = [] | |||
ch.append(c2) | |||
return nn.Sequential(*layers), sorted(save) | |||
if __name__ == '__main__': | |||
parser = argparse.ArgumentParser() | |||
parser.add_argument('--cfg', type=str, default='yolov5s.yaml', help='model.yaml') | |||
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') | |||
opt = parser.parse_args() | |||
opt.cfg = check_file(opt.cfg) # check file | |||
set_logging() | |||
device = select_device(opt.device) | |||
# Create model | |||
model = Model(opt.cfg).to(device) | |||
model.train() | |||
# Profile | |||
# img = torch.rand(8 if torch.cuda.is_available() else 1, 3, 640, 640).to(device) | |||
# y = model(img, profile=True) | |||
# Tensorboard | |||
# from torch.utils.tensorboard import SummaryWriter | |||
# tb_writer = SummaryWriter() | |||
# print("Run 'tensorboard --logdir=models/runs' to view tensorboard at http://localhost:6006/") | |||
# tb_writer.add_graph(model.model, img) # add model to tensorboard | |||
# tb_writer.add_image('test', img[0], dataformats='CWH') # add model to tensorboard |
@@ -0,0 +1,38 @@ | |||
import numpy as np | |||
def filterBox(det0, det1): | |||
# det0为 (m1, 6) 矩阵 | |||
# det1为 (m2, 6) 矩阵 | |||
# 列方向上的6个元素代表x1, y1, x2, y2, conf(置信度), cls(类别) | |||
m, n = det0.size, det1.size | |||
if not m: | |||
return det0 | |||
# 在det0的列方向加一个元素flag代表该目标框中心点是否在之前目标框内(0代表不在,其他代表在) | |||
flag = np.zeros([len(det0), 1]) | |||
det0 = np.concatenate([det0, flag], axis=1) | |||
det0_copy = det0.copy() | |||
if not n: | |||
return det0 | |||
# det0转成 (m1, m2, 7) 的矩阵 | |||
# det1转成 (m1, m2, 6) 的矩阵 | |||
# det0与det1在第3维方向上拼接(6 + 7 = 13) | |||
det0 = det0[:, np.newaxis, :].repeat(det1.shape[0], 1) | |||
det1 = det1[np.newaxis, ...].repeat(det0[0], 0) | |||
joint_det = np.concatenate((det1, det0), axis=2) | |||
# 分别求det0和det1的x1, y1, x2, y2(水平框的左上右下角点) | |||
x1, y1, x2, y2 = joint_det[..., 0], joint_det[..., 1], joint_det[..., 2], joint_det[..., 3] | |||
x3, y3, x4, y4 = joint_det[..., 6], joint_det[..., 7], joint_det[..., 8], joint_det[..., 9] | |||
x_c, y_c = (x3+x4)/2, (y3+y4)/2 | |||
# 类别相同 & 中心点在上一帧的框内 判断为True | |||
mask = (joint_det[..., 5] == joint_det[..., 11]) & ((x_c >= x1) & (x_c <= x2) & (y_c >= y1) & (y_c <= y2)) | |||
# res得出结果为该框中心点在上一帧框中出现的次数 | |||
res = np.sum(mask, axis=1) | |||
# x1, y1, x2, y2, conf, cls, flag (flag代表当前框有多少个满足mask中条件) | |||
det0_copy[..., -1] = res | |||
return det0_copy | |||
@@ -0,0 +1,46 @@ | |||
import time | |||
import cv2 | |||
import numpy as np | |||
import torch | |||
import torch.nn.functional as F | |||
from torchvision.transforms import transforms | |||
def STDC_process(img0, model, device, new_hw=None): | |||
if new_hw is None: | |||
new_hw = [360, 640] | |||
t_start = time.time() | |||
img0 = cv2.cvtColor(img0, cv2.COLOR_BGR2RGB) | |||
t2 = time.time() | |||
print(f't_bgr2rgb. ({t2 - t_start:.3f}s)') | |||
# img0 = img0[..., ::-1] | |||
img = transforms.ToTensor()(img0) | |||
img = transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))(img) | |||
t3 = time.time() | |||
print(f't_trans. ({t3 - t2:.3f}s)') | |||
t_togpu = time.time() | |||
img = img.to(device) | |||
t_togpu2 = time.time() | |||
print(f't_togpu. ({t_togpu2 - t_togpu:.3f}s)') | |||
C, H, W = img.shape | |||
size = img.size()[-2:] | |||
# new_hw = [int(H * scale), int(W * scale)] | |||
# new_hw = [360, 640] | |||
img = img.unsqueeze(0) | |||
img = F.interpolate(img, new_hw, mode='bilinear', align_corners=True) | |||
t_pro = time.time() | |||
print(f't_interpolate. ({t_pro - t_togpu2:.3f}s)') | |||
print(f't_pro. ({t_pro - t_start:.3f}s)') | |||
logits = model(img)[0] | |||
t_inf = time.time() | |||
print(f't_inf. ({t_inf - t_pro:.3f}s)') | |||
logits = F.interpolate(logits, size=size, mode='bilinear', align_corners=True) | |||
probs = torch.softmax(logits, dim=1) | |||
preds = torch.argmax(probs, dim=1) | |||
preds_squeeze = preds.squeeze(0) | |||
preds_squeeze_predict = np.array(preds_squeeze.cpu()) | |||
t_end = time.time() | |||
print(f't_post. ({t_end - t_inf:.3f}s)') | |||
return preds_squeeze_predict |
@@ -0,0 +1,335 @@ | |||
#!/usr/bin/python | |||
# -*- encoding: utf-8 -*- | |||
import torch | |||
import torch.nn as nn | |||
import torch.nn.functional as F | |||
import torchvision | |||
from STDCUtils.nets.stdcnet import STDCNet1446, STDCNet813 | |||
# from modules.bn import InPlaceABNSync as BatchNorm2d | |||
# BatchNorm2d = nn.BatchNorm2d | |||
class ConvBNReLU(nn.Module): | |||
def __init__(self, in_chan, out_chan, ks=3, stride=1, padding=1, *args, **kwargs): | |||
super(ConvBNReLU, self).__init__() | |||
self.conv = nn.Conv2d(in_chan, | |||
out_chan, | |||
kernel_size=ks, | |||
stride=stride, | |||
padding=padding, | |||
bias=False) | |||
# self.bn = BatchNorm2d(out_chan) | |||
# self.bn = BatchNorm2d(out_chan, activation='none') | |||
self.bn = nn.BatchNorm2d(out_chan) | |||
self.relu = nn.ReLU() | |||
self.init_weight() | |||
def forward(self, x): | |||
x = self.conv(x) | |||
x = self.bn(x) | |||
x = self.relu(x) | |||
return x | |||
def init_weight(self): | |||
for ly in self.children(): | |||
if isinstance(ly, nn.Conv2d): | |||
nn.init.kaiming_normal_(ly.weight, a=1) | |||
if not ly.bias is None: nn.init.constant_(ly.bias, 0) | |||
class BiSeNetOutput(nn.Module): | |||
def __init__(self, in_chan, mid_chan, n_classes, *args, **kwargs): | |||
super(BiSeNetOutput, self).__init__() | |||
self.conv = ConvBNReLU(in_chan, mid_chan, ks=3, stride=1, padding=1) | |||
self.conv_out = nn.Conv2d(mid_chan, n_classes, kernel_size=1, bias=False) | |||
self.init_weight() | |||
def forward(self, x): | |||
x = self.conv(x) | |||
x = self.conv_out(x) | |||
return x | |||
def init_weight(self): | |||
for ly in self.children(): | |||
if isinstance(ly, nn.Conv2d): | |||
nn.init.kaiming_normal_(ly.weight, a=1) | |||
if not ly.bias is None: nn.init.constant_(ly.bias, 0) | |||
def get_params(self): | |||
wd_params, nowd_params = [], [] | |||
for name, module in self.named_modules(): | |||
if isinstance(module, (nn.Linear, nn.Conv2d)): | |||
wd_params.append(module.weight) | |||
if not module.bias is None: | |||
nowd_params.append(module.bias) | |||
elif isinstance(module, nn.BatchNorm2d): ######################1 | |||
nowd_params += list(module.parameters()) | |||
return wd_params, nowd_params | |||
class AttentionRefinementModule(nn.Module): | |||
def __init__(self, in_chan, out_chan, *args, **kwargs): | |||
super(AttentionRefinementModule, self).__init__() | |||
self.conv = ConvBNReLU(in_chan, out_chan, ks=3, stride=1, padding=1) | |||
self.conv_atten = nn.Conv2d(out_chan, out_chan, kernel_size=1, bias=False) | |||
# self.bn_atten = nn.BatchNorm2d(out_chan) | |||
# self.bn_atten = BatchNorm2d(out_chan, activation='none') | |||
self.bn_atten = nn.BatchNorm2d(out_chan) ########################2 | |||
self.sigmoid_atten = nn.Sigmoid() | |||
self.init_weight() | |||
def forward(self, x): | |||
feat = self.conv(x) | |||
atten = F.avg_pool2d(feat, feat.size()[2:]) | |||
atten = self.conv_atten(atten) | |||
atten = self.bn_atten(atten) | |||
atten = self.sigmoid_atten(atten) | |||
out = torch.mul(feat, atten) | |||
return out | |||
def init_weight(self): | |||
for ly in self.children(): | |||
if isinstance(ly, nn.Conv2d): | |||
nn.init.kaiming_normal_(ly.weight, a=1) | |||
if not ly.bias is None: nn.init.constant_(ly.bias, 0) | |||
class ContextPath(nn.Module): | |||
def __init__(self, backbone='CatNetSmall', pretrain_model='', use_conv_last=False, *args, **kwargs): | |||
super(ContextPath, self).__init__() | |||
self.backbone_name = backbone | |||
if backbone == 'STDCNet1446': | |||
self.backbone = STDCNet1446(pretrain_model=pretrain_model, use_conv_last=use_conv_last) | |||
self.arm16 = AttentionRefinementModule(512, 128) | |||
inplanes = 1024 | |||
if use_conv_last: | |||
inplanes = 1024 | |||
self.arm32 = AttentionRefinementModule(inplanes, 128) | |||
self.conv_head32 = ConvBNReLU(128, 128, ks=3, stride=1, padding=1) | |||
self.conv_head16 = ConvBNReLU(128, 128, ks=3, stride=1, padding=1) | |||
self.conv_avg = ConvBNReLU(inplanes, 128, ks=1, stride=1, padding=0) | |||
elif backbone == 'STDCNet813': | |||
self.backbone = STDCNet813(pretrain_model=pretrain_model, use_conv_last=use_conv_last) | |||
self.arm16 = AttentionRefinementModule(512, 128) | |||
inplanes = 1024 | |||
if use_conv_last: | |||
inplanes = 1024 | |||
self.arm32 = AttentionRefinementModule(inplanes, 128) | |||
self.conv_head32 = ConvBNReLU(128, 128, ks=3, stride=1, padding=1) | |||
self.conv_head16 = ConvBNReLU(128, 128, ks=3, stride=1, padding=1) | |||
self.conv_avg = ConvBNReLU(inplanes, 128, ks=1, stride=1, padding=0) | |||
else: | |||
print("backbone is not in backbone lists") | |||
exit(0) | |||
self.init_weight() | |||
def forward(self, x): | |||
H0, W0 = x.size()[2:] | |||
feat2, feat4, feat8, feat16, feat32 = self.backbone(x) | |||
H8, W8 = feat8.size()[2:] | |||
H16, W16 = feat16.size()[2:] | |||
H32, W32 = feat32.size()[2:] | |||
avg = F.avg_pool2d(feat32, feat32.size()[2:]) | |||
avg = self.conv_avg(avg) | |||
avg_up = F.interpolate(avg, (H32, W32), mode='nearest') | |||
feat32_arm = self.arm32(feat32) | |||
feat32_sum = feat32_arm + avg_up | |||
feat32_up = F.interpolate(feat32_sum, (H16, W16), mode='nearest') | |||
feat32_up = self.conv_head32(feat32_up) | |||
feat16_arm = self.arm16(feat16) | |||
feat16_sum = feat16_arm + feat32_up | |||
feat16_up = F.interpolate(feat16_sum, (H8, W8), mode='nearest') | |||
feat16_up = self.conv_head16(feat16_up) | |||
return feat2, feat4, feat8, feat16, feat16_up, feat32_up # x8, x16 | |||
def init_weight(self): | |||
for ly in self.children(): | |||
if isinstance(ly, nn.Conv2d): | |||
nn.init.kaiming_normal_(ly.weight, a=1) | |||
if not ly.bias is None: nn.init.constant_(ly.bias, 0) | |||
def get_params(self): | |||
wd_params, nowd_params = [], [] | |||
for name, module in self.named_modules(): | |||
if isinstance(module, (nn.Linear, nn.Conv2d)): | |||
wd_params.append(module.weight) | |||
if not module.bias is None: | |||
nowd_params.append(module.bias) | |||
elif isinstance(module, nn.BatchNorm2d): #################3 | |||
nowd_params += list(module.parameters()) | |||
return wd_params, nowd_params | |||
class FeatureFusionModule(nn.Module): | |||
def __init__(self, in_chan, out_chan, *args, **kwargs): | |||
super(FeatureFusionModule, self).__init__() | |||
self.convblk = ConvBNReLU(in_chan, out_chan, ks=1, stride=1, padding=0) | |||
self.conv1 = nn.Conv2d(out_chan, | |||
out_chan // 4, | |||
kernel_size=1, | |||
stride=1, | |||
padding=0, | |||
bias=False) | |||
self.conv2 = nn.Conv2d(out_chan // 4, | |||
out_chan, | |||
kernel_size=1, | |||
stride=1, | |||
padding=0, | |||
bias=False) | |||
self.relu = nn.ReLU(inplace=True) | |||
self.sigmoid = nn.Sigmoid() | |||
self.init_weight() | |||
def forward(self, fsp, fcp): | |||
fcat = torch.cat([fsp, fcp], dim=1) | |||
feat = self.convblk(fcat) | |||
atten = F.avg_pool2d(feat, feat.size()[2:]) | |||
atten = self.conv1(atten) | |||
atten = self.relu(atten) | |||
atten = self.conv2(atten) | |||
atten = self.sigmoid(atten) | |||
feat_atten = torch.mul(feat, atten) | |||
feat_out = feat_atten + feat | |||
return feat_out | |||
def init_weight(self): | |||
for ly in self.children(): | |||
if isinstance(ly, nn.Conv2d): | |||
nn.init.kaiming_normal_(ly.weight, a=1) | |||
if not ly.bias is None: nn.init.constant_(ly.bias, 0) | |||
def get_params(self): | |||
wd_params, nowd_params = [], [] | |||
for name, module in self.named_modules(): | |||
if isinstance(module, (nn.Linear, nn.Conv2d)): | |||
wd_params.append(module.weight) | |||
if not module.bias is None: | |||
nowd_params.append(module.bias) | |||
elif isinstance(module, nn.BatchNorm2d): ##################4 | |||
nowd_params += list(module.parameters()) | |||
return wd_params, nowd_params | |||
class BiSeNet(nn.Module): | |||
def __init__(self, backbone, n_classes, pretrain_model='', use_boundary_2=False, use_boundary_4=False, | |||
use_boundary_8=False, use_boundary_16=False, use_conv_last=False, heat_map=False, *args, **kwargs): | |||
super(BiSeNet, self).__init__() | |||
self.use_boundary_2 = use_boundary_2 | |||
self.use_boundary_4 = use_boundary_4 | |||
self.use_boundary_8 = use_boundary_8 | |||
self.use_boundary_16 = use_boundary_16 | |||
# self.heat_map = heat_map | |||
self.cp = ContextPath(backbone, pretrain_model, use_conv_last=use_conv_last) | |||
if backbone == 'STDCNet1446': | |||
conv_out_inplanes = 128 | |||
sp2_inplanes = 32 | |||
sp4_inplanes = 64 | |||
sp8_inplanes = 256 | |||
sp16_inplanes = 512 | |||
inplane = sp8_inplanes + conv_out_inplanes | |||
elif backbone == 'STDCNet813': | |||
conv_out_inplanes = 128 | |||
sp2_inplanes = 32 | |||
sp4_inplanes = 64 | |||
sp8_inplanes = 256 | |||
sp16_inplanes = 512 | |||
inplane = sp8_inplanes + conv_out_inplanes | |||
else: | |||
print("backbone is not in backbone lists") | |||
exit(0) | |||
self.ffm = FeatureFusionModule(inplane, 256) | |||
self.conv_out = BiSeNetOutput(256, 256, n_classes) | |||
self.conv_out16 = BiSeNetOutput(conv_out_inplanes, 64, n_classes) | |||
self.conv_out32 = BiSeNetOutput(conv_out_inplanes, 64, n_classes) | |||
self.conv_out_sp16 = BiSeNetOutput(sp16_inplanes, 64, 1) | |||
self.conv_out_sp8 = BiSeNetOutput(sp8_inplanes, 64, 1) | |||
self.conv_out_sp4 = BiSeNetOutput(sp4_inplanes, 64, 1) | |||
self.conv_out_sp2 = BiSeNetOutput(sp2_inplanes, 64, 1) | |||
self.init_weight() | |||
def forward(self, x): | |||
H, W = x.size()[2:] | |||
feat_res2, feat_res4, feat_res8, feat_res16, feat_cp8, feat_cp16 = self.cp(x) | |||
feat_out_sp2 = self.conv_out_sp2(feat_res2) | |||
feat_out_sp4 = self.conv_out_sp4(feat_res4) | |||
feat_out_sp8 = self.conv_out_sp8(feat_res8) | |||
feat_out_sp16 = self.conv_out_sp16(feat_res16) | |||
feat_fuse = self.ffm(feat_res8, feat_cp8) | |||
feat_out = self.conv_out(feat_fuse) | |||
feat_out16 = self.conv_out16(feat_cp8) | |||
feat_out32 = self.conv_out32(feat_cp16) | |||
feat_out = F.interpolate(feat_out, (H, W), mode='bilinear', align_corners=True) | |||
feat_out16 = F.interpolate(feat_out16, (H, W), mode='bilinear', align_corners=True) | |||
feat_out32 = F.interpolate(feat_out32, (H, W), mode='bilinear', align_corners=True) | |||
if self.use_boundary_2 and self.use_boundary_4 and self.use_boundary_8: | |||
return feat_out, feat_out16, feat_out32, feat_out_sp2, feat_out_sp4, feat_out_sp8 | |||
if (not self.use_boundary_2) and self.use_boundary_4 and self.use_boundary_8: | |||
return feat_out, feat_out16, feat_out32, feat_out_sp4, feat_out_sp8 | |||
if (not self.use_boundary_2) and (not self.use_boundary_4) and self.use_boundary_8: | |||
return feat_out, feat_out16, feat_out32, feat_out_sp8 | |||
if (not self.use_boundary_2) and (not self.use_boundary_4) and (not self.use_boundary_8): | |||
return feat_out, feat_out16, feat_out32 | |||
def init_weight(self): | |||
for ly in self.children(): | |||
if isinstance(ly, nn.Conv2d): | |||
nn.init.kaiming_normal_(ly.weight, a=1) | |||
if not ly.bias is None: nn.init.constant_(ly.bias, 0) | |||
def get_params(self): | |||
wd_params, nowd_params, lr_mul_wd_params, lr_mul_nowd_params = [], [], [], [] | |||
for name, child in self.named_children(): | |||
child_wd_params, child_nowd_params = child.get_params() | |||
if isinstance(child, (FeatureFusionModule, BiSeNetOutput)): | |||
lr_mul_wd_params += child_wd_params | |||
lr_mul_nowd_params += child_nowd_params | |||
else: | |||
wd_params += child_wd_params | |||
nowd_params += child_nowd_params | |||
return wd_params, nowd_params, lr_mul_wd_params, lr_mul_nowd_params | |||
if __name__ == "__main__": | |||
net = BiSeNet('STDCNet813', 19) | |||
net.cuda() | |||
net.eval() | |||
in_ten = torch.randn(1, 3, 768, 1536).cuda() | |||
out, out16, out32 = net(in_ten) | |||
print(out.shape) | |||
# torch.save(net.state_dict(), 'STDCNet813.pth')### | |||
@@ -0,0 +1,304 @@ | |||
import torch | |||
import torch.nn as nn | |||
from torch.nn import init | |||
import math | |||
class ConvX(nn.Module): | |||
def __init__(self, in_planes, out_planes, kernel=3, stride=1): | |||
super(ConvX, self).__init__() | |||
self.conv = nn.Conv2d(in_planes, out_planes, kernel_size=kernel, stride=stride, padding=kernel//2, bias=False) | |||
self.bn = nn.BatchNorm2d(out_planes) | |||
self.relu = nn.ReLU(inplace=True) | |||
def forward(self, x): | |||
out = self.relu(self.bn(self.conv(x))) | |||
return out | |||
class AddBottleneck(nn.Module): | |||
def __init__(self, in_planes, out_planes, block_num=3, stride=1): | |||
super(AddBottleneck, self).__init__() | |||
assert block_num > 1, print("block number should be larger than 1.") | |||
self.conv_list = nn.ModuleList() | |||
self.stride = stride | |||
if stride == 2: | |||
self.avd_layer = nn.Sequential( | |||
nn.Conv2d(out_planes//2, out_planes//2, kernel_size=3, stride=2, padding=1, groups=out_planes//2, bias=False), | |||
nn.BatchNorm2d(out_planes//2), | |||
) | |||
self.skip = nn.Sequential( | |||
nn.Conv2d(in_planes, in_planes, kernel_size=3, stride=2, padding=1, groups=in_planes, bias=False), | |||
nn.BatchNorm2d(in_planes), | |||
nn.Conv2d(in_planes, out_planes, kernel_size=1, bias=False), | |||
nn.BatchNorm2d(out_planes), | |||
) | |||
stride = 1 | |||
for idx in range(block_num): | |||
if idx == 0: | |||
self.conv_list.append(ConvX(in_planes, out_planes//2, kernel=1)) | |||
elif idx == 1 and block_num == 2: | |||
self.conv_list.append(ConvX(out_planes//2, out_planes//2, stride=stride)) | |||
elif idx == 1 and block_num > 2: | |||
self.conv_list.append(ConvX(out_planes//2, out_planes//4, stride=stride)) | |||
elif idx < block_num - 1: | |||
self.conv_list.append(ConvX(out_planes//int(math.pow(2, idx)), out_planes//int(math.pow(2, idx+1)))) | |||
else: | |||
self.conv_list.append(ConvX(out_planes//int(math.pow(2, idx)), out_planes//int(math.pow(2, idx)))) | |||
def forward(self, x): | |||
out_list = [] | |||
out = x | |||
for idx, conv in enumerate(self.conv_list): | |||
if idx == 0 and self.stride == 2: | |||
out = self.avd_layer(conv(out)) | |||
else: | |||
out = conv(out) | |||
out_list.append(out) | |||
if self.stride == 2: | |||
x = self.skip(x) | |||
return torch.cat(out_list, dim=1) + x | |||
class CatBottleneck(nn.Module): | |||
def __init__(self, in_planes, out_planes, block_num=3, stride=1): | |||
super(CatBottleneck, self).__init__() | |||
assert block_num > 1, print("block number should be larger than 1.") | |||
self.conv_list = nn.ModuleList() | |||
self.stride = stride | |||
if stride == 2: | |||
self.avd_layer = nn.Sequential( | |||
nn.Conv2d(out_planes//2, out_planes//2, kernel_size=3, stride=2, padding=1, groups=out_planes//2, bias=False), | |||
nn.BatchNorm2d(out_planes//2), | |||
) | |||
self.skip = nn.AvgPool2d(kernel_size=3, stride=2, padding=1) | |||
stride = 1 | |||
for idx in range(block_num): | |||
if idx == 0: | |||
self.conv_list.append(ConvX(in_planes, out_planes//2, kernel=1)) | |||
elif idx == 1 and block_num == 2: | |||
self.conv_list.append(ConvX(out_planes//2, out_planes//2, stride=stride)) | |||
elif idx == 1 and block_num > 2: | |||
self.conv_list.append(ConvX(out_planes//2, out_planes//4, stride=stride)) | |||
elif idx < block_num - 1: | |||
self.conv_list.append(ConvX(out_planes//int(math.pow(2, idx)), out_planes//int(math.pow(2, idx+1)))) | |||
else: | |||
self.conv_list.append(ConvX(out_planes//int(math.pow(2, idx)), out_planes//int(math.pow(2, idx)))) | |||
def forward(self, x): | |||
out_list = [] | |||
out1 = self.conv_list[0](x) | |||
for idx, conv in enumerate(self.conv_list[1:]): | |||
if idx == 0: | |||
if self.stride == 2: | |||
out = conv(self.avd_layer(out1)) | |||
else: | |||
out = conv(out1) | |||
else: | |||
out = conv(out) | |||
out_list.append(out) | |||
if self.stride == 2: | |||
out1 = self.skip(out1) | |||
out_list.insert(0, out1) | |||
out = torch.cat(out_list, dim=1) | |||
return out | |||
#STDC2Net | |||
class STDCNet1446(nn.Module): | |||
def __init__(self, base=64, layers=[4,5,3], block_num=4, type="cat", num_classes=1000, dropout=0.20, pretrain_model='', use_conv_last=False): | |||
super(STDCNet1446, self).__init__() | |||
if type == "cat": | |||
block = CatBottleneck | |||
elif type == "add": | |||
block = AddBottleneck | |||
self.use_conv_last = use_conv_last | |||
self.features = self._make_layers(base, layers, block_num, block) | |||
self.conv_last = ConvX(base*16, max(1024, base*16), 1, 1) | |||
self.gap = nn.AdaptiveAvgPool2d(1) | |||
self.fc = nn.Linear(max(1024, base*16), max(1024, base*16), bias=False) | |||
self.bn = nn.BatchNorm1d(max(1024, base*16)) | |||
self.relu = nn.ReLU(inplace=True) | |||
self.dropout = nn.Dropout(p=dropout) | |||
self.linear = nn.Linear(max(1024, base*16), num_classes, bias=False) | |||
self.x2 = nn.Sequential(self.features[:1]) | |||
self.x4 = nn.Sequential(self.features[1:2]) | |||
self.x8 = nn.Sequential(self.features[2:6]) | |||
self.x16 = nn.Sequential(self.features[6:11]) | |||
self.x32 = nn.Sequential(self.features[11:]) | |||
if pretrain_model: | |||
print('use pretrain model {}'.format(pretrain_model)) | |||
self.init_weight(pretrain_model) | |||
else: | |||
self.init_params() | |||
def init_weight(self, pretrain_model): | |||
state_dict = torch.load(pretrain_model)["state_dict"] | |||
self_state_dict = self.state_dict() | |||
for k, v in state_dict.items(): | |||
self_state_dict.update({k: v}) | |||
self.load_state_dict(self_state_dict) | |||
def init_params(self): | |||
for m in self.modules(): | |||
if isinstance(m, nn.Conv2d): | |||
init.kaiming_normal_(m.weight, mode='fan_out') | |||
if m.bias is not None: | |||
init.constant_(m.bias, 0) | |||
elif isinstance(m, nn.BatchNorm2d): | |||
init.constant_(m.weight, 1) | |||
init.constant_(m.bias, 0) | |||
elif isinstance(m, nn.Linear): | |||
init.normal_(m.weight, std=0.001) | |||
if m.bias is not None: | |||
init.constant_(m.bias, 0) | |||
def _make_layers(self, base, layers, block_num, block): | |||
features = [] | |||
features += [ConvX(3, base//2, 3, 2)] | |||
features += [ConvX(base//2, base, 3, 2)] | |||
for i, layer in enumerate(layers): | |||
for j in range(layer): | |||
if i == 0 and j == 0: | |||
features.append(block(base, base*4, block_num, 2)) | |||
elif j == 0: | |||
features.append(block(base*int(math.pow(2,i+1)), base*int(math.pow(2,i+2)), block_num, 2)) | |||
else: | |||
features.append(block(base*int(math.pow(2,i+2)), base*int(math.pow(2,i+2)), block_num, 1)) | |||
return nn.Sequential(*features) | |||
def forward(self, x): | |||
feat2 = self.x2(x) | |||
feat4 = self.x4(feat2) | |||
feat8 = self.x8(feat4) | |||
feat16 = self.x16(feat8) | |||
feat32 = self.x32(feat16) | |||
if self.use_conv_last: | |||
feat32 = self.conv_last(feat32) | |||
return feat2, feat4, feat8, feat16, feat32 | |||
def forward_impl(self, x): | |||
out = self.features(x) | |||
out = self.conv_last(out).pow(2) | |||
out = self.gap(out).flatten(1) | |||
out = self.fc(out) | |||
# out = self.bn(out) | |||
out = self.relu(out) | |||
# out = self.relu(self.bn(self.fc(out))) | |||
out = self.dropout(out) | |||
out = self.linear(out) | |||
return out | |||
# STDC1Net | |||
class STDCNet813(nn.Module): | |||
def __init__(self, base=64, layers=[2,2,2], block_num=4, type="cat", num_classes=1000, dropout=0.20, pretrain_model='', use_conv_last=False): | |||
super(STDCNet813, self).__init__() | |||
if type == "cat": | |||
block = CatBottleneck | |||
elif type == "add": | |||
block = AddBottleneck | |||
self.use_conv_last = use_conv_last | |||
self.features = self._make_layers(base, layers, block_num, block) | |||
self.conv_last = ConvX(base*16, max(1024, base*16), 1, 1) | |||
self.gap = nn.AdaptiveAvgPool2d(1) | |||
self.fc = nn.Linear(max(1024, base*16), max(1024, base*16), bias=False) | |||
self.bn = nn.BatchNorm1d(max(1024, base*16)) | |||
self.relu = nn.ReLU(inplace=True) | |||
self.dropout = nn.Dropout(p=dropout) | |||
self.linear = nn.Linear(max(1024, base*16), num_classes, bias=False) | |||
self.x2 = nn.Sequential(self.features[:1]) | |||
self.x4 = nn.Sequential(self.features[1:2]) | |||
self.x8 = nn.Sequential(self.features[2:4]) | |||
self.x16 = nn.Sequential(self.features[4:6]) | |||
self.x32 = nn.Sequential(self.features[6:]) | |||
if pretrain_model: | |||
print('use pretrain model {}'.format(pretrain_model)) | |||
self.init_weight(pretrain_model) | |||
else: | |||
self.init_params() | |||
def init_weight(self, pretrain_model): | |||
state_dict = torch.load(pretrain_model)["state_dict"] | |||
self_state_dict = self.state_dict() | |||
for k, v in state_dict.items(): | |||
self_state_dict.update({k: v}) | |||
self.load_state_dict(self_state_dict) | |||
def init_params(self): | |||
for m in self.modules(): | |||
if isinstance(m, nn.Conv2d): | |||
init.kaiming_normal_(m.weight, mode='fan_out') | |||
if m.bias is not None: | |||
init.constant_(m.bias, 0) | |||
elif isinstance(m, nn.BatchNorm2d): | |||
init.constant_(m.weight, 1) | |||
init.constant_(m.bias, 0) | |||
elif isinstance(m, nn.Linear): | |||
init.normal_(m.weight, std=0.001) | |||
if m.bias is not None: | |||
init.constant_(m.bias, 0) | |||
def _make_layers(self, base, layers, block_num, block): | |||
features = [] | |||
features += [ConvX(3, base//2, 3, 2)] | |||
features += [ConvX(base//2, base, 3, 2)] | |||
for i, layer in enumerate(layers): | |||
for j in range(layer): | |||
if i == 0 and j == 0: | |||
features.append(block(base, base*4, block_num, 2)) | |||
elif j == 0: | |||
features.append(block(base*int(math.pow(2,i+1)), base*int(math.pow(2,i+2)), block_num, 2)) | |||
else: | |||
features.append(block(base*int(math.pow(2,i+2)), base*int(math.pow(2,i+2)), block_num, 1)) | |||
return nn.Sequential(*features) | |||
def forward(self, x): | |||
feat2 = self.x2(x) | |||
feat4 = self.x4(feat2) | |||
feat8 = self.x8(feat4) | |||
feat16 = self.x16(feat8) | |||
feat32 = self.x32(feat16) | |||
if self.use_conv_last: | |||
feat32 = self.conv_last(feat32) | |||
return feat2, feat4, feat8, feat16, feat32 | |||
def forward_impl(self, x): | |||
out = self.features(x) | |||
out = self.conv_last(out).pow(2) | |||
out = self.gap(out).flatten(1) | |||
out = self.fc(out) | |||
# out = self.bn(out) | |||
out = self.relu(out) | |||
# out = self.relu(self.bn(self.fc(out))) | |||
out = self.dropout(out) | |||
out = self.linear(out) | |||
return out | |||
if __name__ == "__main__": | |||
model = STDCNet813(num_classes=1000, dropout=0.00, block_num=4) | |||
model.eval() | |||
x = torch.randn(1,3,224,224) | |||
y = model(x) | |||
torch.save(model.state_dict(), 'cat.pth') | |||
print(y.size()) |
@@ -0,0 +1,20 @@ | |||
import cv2 | |||
import numpy as np | |||
def stdc_yolo(stdc_det, yolo_det): | |||
im = np.uint8(stdc_det) | |||
# ret, thresh = cv2.threshold(im, 0.5, 255, cv2.THRESH_BINARY) | |||
# contours = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) | |||
if not yolo_det.size: | |||
return yolo_det | |||
# | |||
x_c = ((yolo_det[:, 0] + yolo_det[:, 2]) // 2).astype(int) | |||
y_c = ((yolo_det[:, 1] + yolo_det[:, 3]) // 2).astype(int) | |||
yolo_filted = yolo_det[im[y_c, x_c] == 0] | |||
return yolo_filted | |||
@@ -0,0 +1,33 @@ | |||
# Hyperparameters for COCO training from scratch | |||
# python train.py --batch 40 --cfg yolov5m.yaml --weights '' --data coco.yaml --img 640 --epochs 300 | |||
# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials | |||
lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3) | |||
lrf: 0.2 # final OneCycleLR learning rate (lr0 * lrf) | |||
momentum: 0.937 # SGD momentum/Adam beta1 | |||
weight_decay: 0.0005 # optimizer weight decay 5e-4 | |||
warmup_epochs: 3.0 # warmup epochs (fractions ok) | |||
warmup_momentum: 0.8 # warmup initial momentum | |||
warmup_bias_lr: 0.1 # warmup initial bias lr | |||
box: 0.05 # box loss gain | |||
cls: 0.5 # cls loss gain | |||
cls_pw: 1.0 # cls BCELoss positive_weight | |||
obj: 1.0 # obj loss gain (scale with pixels) | |||
obj_pw: 1.0 # obj BCELoss positive_weight | |||
iou_t: 0.20 # IoU training threshold | |||
anchor_t: 4.0 # anchor-multiple threshold | |||
# anchors: 3 # anchors per output layer (0 to ignore) | |||
fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5) | |||
hsv_h: 0.015 # image HSV-Hue augmentation (fraction) | |||
hsv_s: 0.7 # image HSV-Saturation augmentation (fraction) | |||
hsv_v: 0.4 # image HSV-Value augmentation (fraction) | |||
degrees: 0.0 # image rotation (+/- deg) | |||
translate: 0.1 # image translation (+/- fraction) | |||
scale: 0.5 # image scale (+/- gain) | |||
shear: 0.0 # image shear (+/- deg) | |||
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001 | |||
flipud: 0.0 # image flip up-down (probability) | |||
fliplr: 0.5 # image flip left-right (probability) | |||
mosaic: 1.0 # image mosaic (probability) | |||
mixup: 0.0 # image mixup (probability) |
@@ -0,0 +1,405 @@ | |||
# YOLOv5 common modules | |||
import math | |||
from copy import copy | |||
from pathlib import Path | |||
import numpy as np | |||
import pandas as pd | |||
import requests | |||
import torch | |||
import torch.nn as nn | |||
from PIL import Image | |||
from torch.cuda import amp | |||
from utils.datasets import letterbox | |||
from utils.general import non_max_suppression, make_divisible, scale_coords, increment_path, xyxy2xywh | |||
from utils.plots import color_list, plot_one_box | |||
from utils.torch_utils import time_synchronized | |||
import warnings | |||
class SPPF(nn.Module): | |||
# Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher | |||
def __init__(self, c1, c2, k=5): # equivalent to SPP(k=(5, 9, 13)) | |||
super().__init__() | |||
c_ = c1 // 2 # hidden channels | |||
self.cv1 = Conv(c1, c_, 1, 1) | |||
self.cv2 = Conv(c_ * 4, c2, 1, 1) | |||
self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2) | |||
def forward(self, x): | |||
x = self.cv1(x) | |||
with warnings.catch_warnings(): | |||
warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning | |||
y1 = self.m(x) | |||
y2 = self.m(y1) | |||
return self.cv2(torch.cat([x, y1, y2, self.m(y2)], 1)) | |||
def autopad(k, p=None): # kernel, padding | |||
# Pad to 'same' | |||
if p is None: | |||
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad | |||
return p | |||
def DWConv(c1, c2, k=1, s=1, act=True): | |||
# Depthwise convolution | |||
return Conv(c1, c2, k, s, g=math.gcd(c1, c2), act=act) | |||
class Conv(nn.Module): | |||
# Standard convolution | |||
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups | |||
super(Conv, self).__init__() | |||
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False) | |||
self.bn = nn.BatchNorm2d(c2) | |||
self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity()) | |||
def forward(self, x): | |||
return self.act(self.bn(self.conv(x))) | |||
def fuseforward(self, x): | |||
return self.act(self.conv(x)) | |||
class TransformerLayer(nn.Module): | |||
# Transformer layer https://arxiv.org/abs/2010.11929 (LayerNorm layers removed for better performance) | |||
def __init__(self, c, num_heads): | |||
super().__init__() | |||
self.q = nn.Linear(c, c, bias=False) | |||
self.k = nn.Linear(c, c, bias=False) | |||
self.v = nn.Linear(c, c, bias=False) | |||
self.ma = nn.MultiheadAttention(embed_dim=c, num_heads=num_heads) | |||
self.fc1 = nn.Linear(c, c, bias=False) | |||
self.fc2 = nn.Linear(c, c, bias=False) | |||
def forward(self, x): | |||
x = self.ma(self.q(x), self.k(x), self.v(x))[0] + x | |||
x = self.fc2(self.fc1(x)) + x | |||
return x | |||
class TransformerBlock(nn.Module): | |||
# Vision Transformer https://arxiv.org/abs/2010.11929 | |||
def __init__(self, c1, c2, num_heads, num_layers): | |||
super().__init__() | |||
self.conv = None | |||
if c1 != c2: | |||
self.conv = Conv(c1, c2) | |||
self.linear = nn.Linear(c2, c2) # learnable position embedding | |||
self.tr = nn.Sequential(*[TransformerLayer(c2, num_heads) for _ in range(num_layers)]) | |||
self.c2 = c2 | |||
def forward(self, x): | |||
if self.conv is not None: | |||
x = self.conv(x) | |||
b, _, w, h = x.shape | |||
p = x.flatten(2) | |||
p = p.unsqueeze(0) | |||
p = p.transpose(0, 3) | |||
p = p.squeeze(3) | |||
e = self.linear(p) | |||
x = p + e | |||
x = self.tr(x) | |||
x = x.unsqueeze(3) | |||
x = x.transpose(0, 3) | |||
x = x.reshape(b, self.c2, w, h) | |||
return x | |||
class Bottleneck(nn.Module): | |||
# Standard bottleneck | |||
def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion | |||
super(Bottleneck, self).__init__() | |||
c_ = int(c2 * e) # hidden channels | |||
self.cv1 = Conv(c1, c_, 1, 1) | |||
self.cv2 = Conv(c_, c2, 3, 1, g=g) | |||
self.add = shortcut and c1 == c2 | |||
def forward(self, x): | |||
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x)) | |||
class BottleneckCSP(nn.Module): | |||
# CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks | |||
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion | |||
super(BottleneckCSP, self).__init__() | |||
c_ = int(c2 * e) # hidden channels | |||
self.cv1 = Conv(c1, c_, 1, 1) | |||
self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False) | |||
self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False) | |||
self.cv4 = Conv(2 * c_, c2, 1, 1) | |||
self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3) | |||
self.act = nn.LeakyReLU(0.1, inplace=True) | |||
self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)]) | |||
def forward(self, x): | |||
y1 = self.cv3(self.m(self.cv1(x))) | |||
y2 = self.cv2(x) | |||
return self.cv4(self.act(self.bn(torch.cat((y1, y2), dim=1)))) | |||
class C3(nn.Module): | |||
# CSP Bottleneck with 3 convolutions | |||
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion | |||
super(C3, self).__init__() | |||
c_ = int(c2 * e) # hidden channels | |||
self.cv1 = Conv(c1, c_, 1, 1) | |||
self.cv2 = Conv(c1, c_, 1, 1) | |||
self.cv3 = Conv(2 * c_, c2, 1) # act=FReLU(c2) | |||
self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)]) | |||
# self.m = nn.Sequential(*[CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)]) | |||
def forward(self, x): | |||
return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1)) | |||
class C3TR(C3): | |||
# C3 module with TransformerBlock() | |||
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): | |||
super().__init__(c1, c2, n, shortcut, g, e) | |||
c_ = int(c2 * e) | |||
self.m = TransformerBlock(c_, c_, 4, n) | |||
class SPP(nn.Module): | |||
# Spatial pyramid pooling layer used in YOLOv3-SPP | |||
def __init__(self, c1, c2, k=(5, 9, 13)): | |||
super(SPP, self).__init__() | |||
c_ = c1 // 2 # hidden channels | |||
self.cv1 = Conv(c1, c_, 1, 1) | |||
self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1) | |||
self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k]) | |||
def forward(self, x): | |||
x = self.cv1(x) | |||
return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1)) | |||
class Focus(nn.Module): | |||
# Focus wh information into c-space | |||
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups | |||
super(Focus, self).__init__() | |||
self.conv = Conv(c1 * 4, c2, k, s, p, g, act) | |||
# self.contract = Contract(gain=2) | |||
def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2) | |||
return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1)) | |||
# return self.conv(self.contract(x)) | |||
class Contract(nn.Module): | |||
# Contract width-height into channels, i.e. x(1,64,80,80) to x(1,256,40,40) | |||
def __init__(self, gain=2): | |||
super().__init__() | |||
self.gain = gain | |||
def forward(self, x): | |||
N, C, H, W = x.size() # assert (H / s == 0) and (W / s == 0), 'Indivisible gain' | |||
s = self.gain | |||
x = x.view(N, C, H // s, s, W // s, s) # x(1,64,40,2,40,2) | |||
x = x.permute(0, 3, 5, 1, 2, 4).contiguous() # x(1,2,2,64,40,40) | |||
return x.view(N, C * s * s, H // s, W // s) # x(1,256,40,40) | |||
class Expand(nn.Module): | |||
# Expand channels into width-height, i.e. x(1,64,80,80) to x(1,16,160,160) | |||
def __init__(self, gain=2): | |||
super().__init__() | |||
self.gain = gain | |||
def forward(self, x): | |||
N, C, H, W = x.size() # assert C / s ** 2 == 0, 'Indivisible gain' | |||
s = self.gain | |||
x = x.view(N, s, s, C // s ** 2, H, W) # x(1,2,2,16,80,80) | |||
x = x.permute(0, 3, 4, 1, 5, 2).contiguous() # x(1,16,80,2,80,2) | |||
return x.view(N, C // s ** 2, H * s, W * s) # x(1,16,160,160) | |||
class Concat(nn.Module): | |||
# Concatenate a list of tensors along dimension | |||
def __init__(self, dimension=1): | |||
super(Concat, self).__init__() | |||
self.d = dimension | |||
def forward(self, x): | |||
return torch.cat(x, self.d) | |||
class NMS(nn.Module): | |||
# Non-Maximum Suppression (NMS) module | |||
conf = 0.25 # confidence threshold | |||
iou = 0.45 # IoU threshold | |||
classes = None # (optional list) filter by class | |||
def __init__(self): | |||
super(NMS, self).__init__() | |||
def forward(self, x): | |||
return non_max_suppression(x[0], conf_thres=self.conf, iou_thres=self.iou, classes=self.classes) | |||
class autoShape(nn.Module): | |||
# input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS | |||
conf = 0.25 # NMS confidence threshold | |||
iou = 0.45 # NMS IoU threshold | |||
classes = None # (optional list) filter by class | |||
def __init__(self, model): | |||
super(autoShape, self).__init__() | |||
self.model = model.eval() | |||
def autoshape(self): | |||
print('autoShape already enabled, skipping... ') # model already converted to model.autoshape() | |||
return self | |||
@torch.no_grad() | |||
def forward(self, imgs, size=640, augment=False, profile=False): | |||
# Inference from various sources. For height=640, width=1280, RGB images example inputs are: | |||
# filename: imgs = 'data/images/zidane.jpg' | |||
# URI: = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/zidane.jpg' | |||
# OpenCV: = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(640,1280,3) | |||
# PIL: = Image.open('image.jpg') # HWC x(640,1280,3) | |||
# numpy: = np.zeros((640,1280,3)) # HWC | |||
# torch: = torch.zeros(16,3,320,640) # BCHW (scaled to size=640, 0-1 values) | |||
# multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images | |||
t = [time_synchronized()] | |||
p = next(self.model.parameters()) # for device and type | |||
if isinstance(imgs, torch.Tensor): # torch | |||
with amp.autocast(enabled=p.device.type != 'cpu'): | |||
return self.model(imgs.to(p.device).type_as(p), augment, profile) # inference | |||
# Pre-process | |||
n, imgs = (len(imgs), imgs) if isinstance(imgs, list) else (1, [imgs]) # number of images, list of images | |||
shape0, shape1, files = [], [], [] # image and inference shapes, filenames | |||
for i, im in enumerate(imgs): | |||
f = f'image{i}' # filename | |||
if isinstance(im, str): # filename or uri | |||
im, f = np.asarray(Image.open(requests.get(im, stream=True).raw if im.startswith('http') else im)), im | |||
elif isinstance(im, Image.Image): # PIL Image | |||
im, f = np.asarray(im), getattr(im, 'filename', f) or f | |||
files.append(Path(f).with_suffix('.jpg').name) | |||
if im.shape[0] < 5: # image in CHW | |||
im = im.transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1) | |||
im = im[:, :, :3] if im.ndim == 3 else np.tile(im[:, :, None], 3) # enforce 3ch input | |||
s = im.shape[:2] # HWC | |||
shape0.append(s) # image shape | |||
g = (size / max(s)) # gain | |||
shape1.append([y * g for y in s]) | |||
imgs[i] = im if im.data.contiguous else np.ascontiguousarray(im) # update | |||
shape1 = [make_divisible(x, int(self.stride.max())) for x in np.stack(shape1, 0).max(0)] # inference shape | |||
x = [letterbox(im, new_shape=shape1, auto=False)[0] for im in imgs] # pad | |||
x = np.stack(x, 0) if n > 1 else x[0][None] # stack | |||
x = np.ascontiguousarray(x.transpose((0, 3, 1, 2))) # BHWC to BCHW | |||
x = torch.from_numpy(x).to(p.device).type_as(p) / 255. # uint8 to fp16/32 | |||
t.append(time_synchronized()) | |||
with amp.autocast(enabled=p.device.type != 'cpu'): | |||
# Inference | |||
y = self.model(x, augment, profile)[0] # forward | |||
t.append(time_synchronized()) | |||
# Post-process | |||
y = non_max_suppression(y, conf_thres=self.conf, iou_thres=self.iou, classes=self.classes) # NMS | |||
for i in range(n): | |||
scale_coords(shape1, y[i][:, :4], shape0[i]) | |||
t.append(time_synchronized()) | |||
return Detections(imgs, y, files, t, self.names, x.shape) | |||
class Detections: | |||
# detections class for YOLOv5 inference results | |||
def __init__(self, imgs, pred, files, times=None, names=None, shape=None): | |||
super(Detections, self).__init__() | |||
d = pred[0].device # device | |||
gn = [torch.tensor([*[im.shape[i] for i in [1, 0, 1, 0]], 1., 1.], device=d) for im in imgs] # normalizations | |||
self.imgs = imgs # list of images as numpy arrays | |||
self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls) | |||
self.names = names # class names | |||
self.files = files # image filenames | |||
self.xyxy = pred # xyxy pixels | |||
self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels | |||
self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized | |||
self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized | |||
self.n = len(self.pred) # number of images (batch size) | |||
self.t = tuple((times[i + 1] - times[i]) * 1000 / self.n for i in range(3)) # timestamps (ms) | |||
self.s = shape # inference BCHW shape | |||
def display(self, pprint=False, show=False, save=False, render=False, save_dir=''): | |||
colors = color_list() | |||
for i, (img, pred) in enumerate(zip(self.imgs, self.pred)): | |||
str = f'image {i + 1}/{len(self.pred)}: {img.shape[0]}x{img.shape[1]} ' | |||
if pred is not None: | |||
for c in pred[:, -1].unique(): | |||
n = (pred[:, -1] == c).sum() # detections per class | |||
str += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " # add to string | |||
if show or save or render: | |||
for *box, conf, cls in pred: # xyxy, confidence, class | |||
label = f'{self.names[int(cls)]} {conf:.2f}' | |||
plot_one_box(box, img, label=label, color=colors[int(cls) % 10]) | |||
img = Image.fromarray(img.astype(np.uint8)) if isinstance(img, np.ndarray) else img # from np | |||
if pprint: | |||
print(str.rstrip(', ')) | |||
if show: | |||
img.show(self.files[i]) # show | |||
if save: | |||
f = self.files[i] | |||
img.save(Path(save_dir) / f) # save | |||
print(f"{'Saved' * (i == 0)} {f}", end=',' if i < self.n - 1 else f' to {save_dir}\n') | |||
if render: | |||
self.imgs[i] = np.asarray(img) | |||
def print(self): | |||
self.display(pprint=True) # print results | |||
print(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {tuple(self.s)}' % self.t) | |||
def show(self): | |||
self.display(show=True) # show results | |||
def save(self, save_dir='runs/hub/exp'): | |||
save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/hub/exp') # increment save_dir | |||
Path(save_dir).mkdir(parents=True, exist_ok=True) | |||
self.display(save=True, save_dir=save_dir) # save results | |||
def render(self): | |||
self.display(render=True) # render results | |||
return self.imgs | |||
def pandas(self): | |||
# return detections as pandas DataFrames, i.e. print(results.pandas().xyxy[0]) | |||
new = copy(self) # return copy | |||
ca = 'xmin', 'ymin', 'xmax', 'ymax', 'confidence', 'class', 'name' # xyxy columns | |||
cb = 'xcenter', 'ycenter', 'width', 'height', 'confidence', 'class', 'name' # xywh columns | |||
for k, c in zip(['xyxy', 'xyxyn', 'xywh', 'xywhn'], [ca, ca, cb, cb]): | |||
a = [[x[:5] + [int(x[5]), self.names[int(x[5])]] for x in x.tolist()] for x in getattr(self, k)] # update | |||
setattr(new, k, [pd.DataFrame(x, columns=c) for x in a]) | |||
return new | |||
def tolist(self): | |||
# return a list of Detections objects, i.e. 'for result in results.tolist():' | |||
x = [Detections([self.imgs[i]], [self.pred[i]], self.names, self.s) for i in range(self.n)] | |||
for d in x: | |||
for k in ['imgs', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']: | |||
setattr(d, k, getattr(d, k)[0]) # pop out of list | |||
return x | |||
def __len__(self): | |||
return self.n | |||
class Classify(nn.Module): | |||
# Classification head, i.e. x(b,c1,20,20) to x(b,c2) | |||
def __init__(self, c1, c2, k=1, s=1, p=None, g=1): # ch_in, ch_out, kernel, stride, padding, groups | |||
super(Classify, self).__init__() | |||
self.aap = nn.AdaptiveAvgPool2d(1) # to x(b,c1,1,1) | |||
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g) # to x(b,c2,1,1) | |||
self.flat = nn.Flatten() | |||
def forward(self, x): | |||
z = torch.cat([self.aap(y) for y in (x if isinstance(x, list) else [x])], 1) # cat if list | |||
return self.flat(self.conv(z)) # flatten to x(b,c2) |
@@ -0,0 +1,135 @@ | |||
# YOLOv5 experimental modules | |||
import numpy as np | |||
import torch | |||
import torch.nn as nn | |||
import os | |||
from models.common import Conv, DWConv | |||
from utils.google_utils import attempt_download | |||
class CrossConv(nn.Module): | |||
# Cross Convolution Downsample | |||
def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False): | |||
# ch_in, ch_out, kernel, stride, groups, expansion, shortcut | |||
super(CrossConv, self).__init__() | |||
c_ = int(c2 * e) # hidden channels | |||
self.cv1 = Conv(c1, c_, (1, k), (1, s)) | |||
self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g) | |||
self.add = shortcut and c1 == c2 | |||
def forward(self, x): | |||
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x)) | |||
class Sum(nn.Module): | |||
# Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070 | |||
def __init__(self, n, weight=False): # n: number of inputs | |||
super(Sum, self).__init__() | |||
self.weight = weight # apply weights boolean | |||
self.iter = range(n - 1) # iter object | |||
if weight: | |||
self.w = nn.Parameter(-torch.arange(1., n) / 2, requires_grad=True) # layer weights | |||
def forward(self, x): | |||
y = x[0] # no weight | |||
if self.weight: | |||
w = torch.sigmoid(self.w) * 2 | |||
for i in self.iter: | |||
y = y + x[i + 1] * w[i] | |||
else: | |||
for i in self.iter: | |||
y = y + x[i + 1] | |||
return y | |||
class GhostConv(nn.Module): | |||
# Ghost Convolution https://github.com/huawei-noah/ghostnet | |||
def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups | |||
super(GhostConv, self).__init__() | |||
c_ = c2 // 2 # hidden channels | |||
self.cv1 = Conv(c1, c_, k, s, None, g, act) | |||
self.cv2 = Conv(c_, c_, 5, 1, None, c_, act) | |||
def forward(self, x): | |||
y = self.cv1(x) | |||
return torch.cat([y, self.cv2(y)], 1) | |||
class GhostBottleneck(nn.Module): | |||
# Ghost Bottleneck https://github.com/huawei-noah/ghostnet | |||
def __init__(self, c1, c2, k=3, s=1): # ch_in, ch_out, kernel, stride | |||
super(GhostBottleneck, self).__init__() | |||
c_ = c2 // 2 | |||
self.conv = nn.Sequential(GhostConv(c1, c_, 1, 1), # pw | |||
DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw | |||
GhostConv(c_, c2, 1, 1, act=False)) # pw-linear | |||
self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False), | |||
Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity() | |||
def forward(self, x): | |||
return self.conv(x) + self.shortcut(x) | |||
class MixConv2d(nn.Module): | |||
# Mixed Depthwise Conv https://arxiv.org/abs/1907.09595 | |||
def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True): | |||
super(MixConv2d, self).__init__() | |||
groups = len(k) | |||
if equal_ch: # equal c_ per group | |||
i = torch.linspace(0, groups - 1E-6, c2).floor() # c2 indices | |||
c_ = [(i == g).sum() for g in range(groups)] # intermediate channels | |||
else: # equal weight.numel() per group | |||
b = [c2] + [0] * groups | |||
a = np.eye(groups + 1, groups, k=-1) | |||
a -= np.roll(a, 1, axis=1) | |||
a *= np.array(k) ** 2 | |||
a[0] = 1 | |||
c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b | |||
self.m = nn.ModuleList([nn.Conv2d(c1, int(c_[g]), k[g], s, k[g] // 2, bias=False) for g in range(groups)]) | |||
self.bn = nn.BatchNorm2d(c2) | |||
self.act = nn.LeakyReLU(0.1, inplace=True) | |||
def forward(self, x): | |||
return x + self.act(self.bn(torch.cat([m(x) for m in self.m], 1))) | |||
class Ensemble(nn.ModuleList): | |||
# Ensemble of models | |||
def __init__(self): | |||
super(Ensemble, self).__init__() | |||
def forward(self, x, augment=False): | |||
y = [] | |||
for module in self: | |||
y.append(module(x, augment)[0]) | |||
# y = torch.stack(y).max(0)[0] # max ensemble | |||
# y = torch.stack(y).mean(0) # mean ensemble | |||
y = torch.cat(y, 1) # nms ensemble | |||
return y, None # inference, train output | |||
def attempt_load(weights, map_location=None): | |||
# Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a | |||
model = Ensemble() | |||
for w in weights if isinstance(weights, list) else [weights]: | |||
#attempt_download(w) | |||
assert os.path.exists(w),"%s not exists" | |||
ckpt = torch.load(w, map_location=map_location) # load | |||
model.append(ckpt['ema' if ckpt.get('ema') else 'model'].float().fuse().eval()) # FP32 model | |||
# Compatibility updates | |||
for m in model.modules(): | |||
if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]: | |||
m.inplace = True # pytorch 1.7.0 compatibility | |||
elif type(m) is Conv: | |||
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility | |||
if len(model) == 1: | |||
return model[-1] # return model | |||
else: | |||
print('Ensemble created with %s\n' % weights) | |||
for k in ['names', 'stride']: | |||
setattr(model, k, getattr(model[-1], k)) | |||
return model # return ensemble |
@@ -0,0 +1,123 @@ | |||
"""Exports a YOLOv5 *.pt model to ONNX and TorchScript formats | |||
Usage: | |||
$ export PYTHONPATH="$PWD" && python models/export.py --weights yolov5s.pt --img 640 --batch 1 | |||
""" | |||
import argparse | |||
import sys | |||
import time | |||
sys.path.append('./') # to run '$ python *.py' files in subdirectories | |||
import torch | |||
import torch.nn as nn | |||
import models | |||
from models.experimental import attempt_load | |||
from utils.activations import Hardswish, SiLU | |||
from utils.general import colorstr, check_img_size, check_requirements, set_logging | |||
from utils.torch_utils import select_device | |||
if __name__ == '__main__': | |||
parser = argparse.ArgumentParser() | |||
parser.add_argument('--weights', type=str, default='./yolov5s.pt', help='weights path') | |||
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size') # height, width | |||
parser.add_argument('--batch-size', type=int, default=1, help='batch size') | |||
parser.add_argument('--grid', action='store_true', help='export Detect() layer grid') | |||
parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') | |||
parser.add_argument('--dynamic', action='store_true', help='dynamic ONNX axes') # ONNX-only | |||
parser.add_argument('--simplify', action='store_true', help='simplify ONNX model') # ONNX-only | |||
opt = parser.parse_args() | |||
opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand | |||
print(opt) | |||
set_logging() | |||
t = time.time() | |||
# Load PyTorch model | |||
device = select_device(opt.device) | |||
model = attempt_load(opt.weights, map_location=device) # load FP32 model | |||
labels = model.names | |||
# Checks | |||
gs = int(max(model.stride)) # grid size (max stride) | |||
opt.img_size = [check_img_size(x, gs) for x in opt.img_size] # verify img_size are gs-multiples | |||
# Input | |||
img = torch.zeros(opt.batch_size, 3, *opt.img_size).to(device) # image size(1,3,320,192) iDetection | |||
# Update model | |||
for k, m in model.named_modules(): | |||
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility | |||
if isinstance(m, models.common.Conv): # assign export-friendly activations | |||
if isinstance(m.act, nn.Hardswish): | |||
m.act = Hardswish() | |||
elif isinstance(m.act, nn.SiLU): | |||
m.act = SiLU() | |||
# elif isinstance(m, models.yolo.Detect): | |||
# m.forward = m.forward_export # assign forward (optional) | |||
model.model[-1].export = not opt.grid # set Detect() layer grid export | |||
y = model(img) # dry run | |||
# TorchScript export ----------------------------------------------------------------------------------------------- | |||
prefix = colorstr('TorchScript:') | |||
try: | |||
print(f'\n{prefix} starting export with torch {torch.__version__}...') | |||
f = opt.weights.replace('.pt', '.torchscript.pt') # filename | |||
ts = torch.jit.trace(model, img, strict=False) | |||
ts.save(f) | |||
print(f'{prefix} export success, saved as {f}') | |||
except Exception as e: | |||
print(f'{prefix} export failure: {e}') | |||
# ONNX export ------------------------------------------------------------------------------------------------------ | |||
prefix = colorstr('ONNX:') | |||
try: | |||
import onnx | |||
print(f'{prefix} starting export with onnx {onnx.__version__}...') | |||
f = opt.weights.replace('.pt', '.onnx') # filename | |||
torch.onnx.export(model, img, f, verbose=False, opset_version=12, input_names=['images'], | |||
output_names=['classes', 'boxes'] if y is None else ['output'], | |||
dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'}, # size(1,3,640,640) | |||
'output': {0: 'batch', 2: 'y', 3: 'x'}} if opt.dynamic else None) | |||
# Checks | |||
model_onnx = onnx.load(f) # load onnx model | |||
onnx.checker.check_model(model_onnx) # check onnx model | |||
# print(onnx.helper.printable_graph(model_onnx.graph)) # print | |||
# Simplify | |||
if opt.simplify: | |||
try: | |||
check_requirements(['onnx-simplifier']) | |||
import onnxsim | |||
print(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...') | |||
model_onnx, check = onnxsim.simplify(model_onnx, | |||
dynamic_input_shape=opt.dynamic, | |||
input_shapes={'images': list(img.shape)} if opt.dynamic else None) | |||
assert check, 'assert check failed' | |||
onnx.save(model_onnx, f) | |||
except Exception as e: | |||
print(f'{prefix} simplifier failure: {e}') | |||
print(f'{prefix} export success, saved as {f}') | |||
except Exception as e: | |||
print(f'{prefix} export failure: {e}') | |||
# CoreML export ---------------------------------------------------------------------------------------------------- | |||
prefix = colorstr('CoreML:') | |||
try: | |||
import coremltools as ct | |||
print(f'{prefix} starting export with coremltools {onnx.__version__}...') | |||
# convert model from torchscript and apply pixel scaling as per detect.py | |||
model = ct.convert(ts, inputs=[ct.ImageType(name='image', shape=img.shape, scale=1 / 255.0, bias=[0, 0, 0])]) | |||
f = opt.weights.replace('.pt', '.mlmodel') # filename | |||
model.save(f) | |||
print(f'{prefix} export success, saved as {f}') | |||
except Exception as e: | |||
print(f'{prefix} export failure: {e}') | |||
# Finish | |||
print(f'\nExport complete ({time.time() - t:.2f}s). Visualize with https://github.com/lutzroeder/netron.') |
@@ -0,0 +1,58 @@ | |||
# Default YOLOv5 anchors for COCO data | |||
# P5 ------------------------------------------------------------------------------------------------------------------- | |||
# P5-640: | |||
anchors_p5_640: | |||
- [ 10,13, 16,30, 33,23 ] # P3/8 | |||
- [ 30,61, 62,45, 59,119 ] # P4/16 | |||
- [ 116,90, 156,198, 373,326 ] # P5/32 | |||
# P6 ------------------------------------------------------------------------------------------------------------------- | |||
# P6-640: thr=0.25: 0.9964 BPR, 5.54 anchors past thr, n=12, img_size=640, metric_all=0.281/0.716-mean/best, past_thr=0.469-mean: 9,11, 21,19, 17,41, 43,32, 39,70, 86,64, 65,131, 134,130, 120,265, 282,180, 247,354, 512,387 | |||
anchors_p6_640: | |||
- [ 9,11, 21,19, 17,41 ] # P3/8 | |||
- [ 43,32, 39,70, 86,64 ] # P4/16 | |||
- [ 65,131, 134,130, 120,265 ] # P5/32 | |||
- [ 282,180, 247,354, 512,387 ] # P6/64 | |||
# P6-1280: thr=0.25: 0.9950 BPR, 5.55 anchors past thr, n=12, img_size=1280, metric_all=0.281/0.714-mean/best, past_thr=0.468-mean: 19,27, 44,40, 38,94, 96,68, 86,152, 180,137, 140,301, 303,264, 238,542, 436,615, 739,380, 925,792 | |||
anchors_p6_1280: | |||
- [ 19,27, 44,40, 38,94 ] # P3/8 | |||
- [ 96,68, 86,152, 180,137 ] # P4/16 | |||
- [ 140,301, 303,264, 238,542 ] # P5/32 | |||
- [ 436,615, 739,380, 925,792 ] # P6/64 | |||
# P6-1920: thr=0.25: 0.9950 BPR, 5.55 anchors past thr, n=12, img_size=1920, metric_all=0.281/0.714-mean/best, past_thr=0.468-mean: 28,41, 67,59, 57,141, 144,103, 129,227, 270,205, 209,452, 455,396, 358,812, 653,922, 1109,570, 1387,1187 | |||
anchors_p6_1920: | |||
- [ 28,41, 67,59, 57,141 ] # P3/8 | |||
- [ 144,103, 129,227, 270,205 ] # P4/16 | |||
- [ 209,452, 455,396, 358,812 ] # P5/32 | |||
- [ 653,922, 1109,570, 1387,1187 ] # P6/64 | |||
# P7 ------------------------------------------------------------------------------------------------------------------- | |||
# P7-640: thr=0.25: 0.9962 BPR, 6.76 anchors past thr, n=15, img_size=640, metric_all=0.275/0.733-mean/best, past_thr=0.466-mean: 11,11, 13,30, 29,20, 30,46, 61,38, 39,92, 78,80, 146,66, 79,163, 149,150, 321,143, 157,303, 257,402, 359,290, 524,372 | |||
anchors_p7_640: | |||
- [ 11,11, 13,30, 29,20 ] # P3/8 | |||
- [ 30,46, 61,38, 39,92 ] # P4/16 | |||
- [ 78,80, 146,66, 79,163 ] # P5/32 | |||
- [ 149,150, 321,143, 157,303 ] # P6/64 | |||
- [ 257,402, 359,290, 524,372 ] # P7/128 | |||
# P7-1280: thr=0.25: 0.9968 BPR, 6.71 anchors past thr, n=15, img_size=1280, metric_all=0.273/0.732-mean/best, past_thr=0.463-mean: 19,22, 54,36, 32,77, 70,83, 138,71, 75,173, 165,159, 148,334, 375,151, 334,317, 251,626, 499,474, 750,326, 534,814, 1079,818 | |||
anchors_p7_1280: | |||
- [ 19,22, 54,36, 32,77 ] # P3/8 | |||
- [ 70,83, 138,71, 75,173 ] # P4/16 | |||
- [ 165,159, 148,334, 375,151 ] # P5/32 | |||
- [ 334,317, 251,626, 499,474 ] # P6/64 | |||
- [ 750,326, 534,814, 1079,818 ] # P7/128 | |||
# P7-1920: thr=0.25: 0.9968 BPR, 6.71 anchors past thr, n=15, img_size=1920, metric_all=0.273/0.732-mean/best, past_thr=0.463-mean: 29,34, 81,55, 47,115, 105,124, 207,107, 113,259, 247,238, 222,500, 563,227, 501,476, 376,939, 749,711, 1126,489, 801,1222, 1618,1227 | |||
anchors_p7_1920: | |||
- [ 29,34, 81,55, 47,115 ] # P3/8 | |||
- [ 105,124, 207,107, 113,259 ] # P4/16 | |||
- [ 247,238, 222,500, 563,227 ] # P5/32 | |||
- [ 501,476, 376,939, 749,711 ] # P6/64 | |||
- [ 1126,489, 801,1222, 1618,1227 ] # P7/128 |
@@ -0,0 +1,51 @@ | |||
# parameters | |||
nc: 80 # number of classes | |||
depth_multiple: 1.0 # model depth multiple | |||
width_multiple: 1.0 # layer channel multiple | |||
# anchors | |||
anchors: | |||
- [10,13, 16,30, 33,23] # P3/8 | |||
- [30,61, 62,45, 59,119] # P4/16 | |||
- [116,90, 156,198, 373,326] # P5/32 | |||
# darknet53 backbone | |||
backbone: | |||
# [from, number, module, args] | |||
[[-1, 1, Conv, [32, 3, 1]], # 0 | |||
[-1, 1, Conv, [64, 3, 2]], # 1-P1/2 | |||
[-1, 1, Bottleneck, [64]], | |||
[-1, 1, Conv, [128, 3, 2]], # 3-P2/4 | |||
[-1, 2, Bottleneck, [128]], | |||
[-1, 1, Conv, [256, 3, 2]], # 5-P3/8 | |||
[-1, 8, Bottleneck, [256]], | |||
[-1, 1, Conv, [512, 3, 2]], # 7-P4/16 | |||
[-1, 8, Bottleneck, [512]], | |||
[-1, 1, Conv, [1024, 3, 2]], # 9-P5/32 | |||
[-1, 4, Bottleneck, [1024]], # 10 | |||
] | |||
# YOLOv3-SPP head | |||
head: | |||
[[-1, 1, Bottleneck, [1024, False]], | |||
[-1, 1, SPP, [512, [5, 9, 13]]], | |||
[-1, 1, Conv, [1024, 3, 1]], | |||
[-1, 1, Conv, [512, 1, 1]], | |||
[-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large) | |||
[-2, 1, Conv, [256, 1, 1]], | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | |||
[[-1, 8], 1, Concat, [1]], # cat backbone P4 | |||
[-1, 1, Bottleneck, [512, False]], | |||
[-1, 1, Bottleneck, [512, False]], | |||
[-1, 1, Conv, [256, 1, 1]], | |||
[-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium) | |||
[-2, 1, Conv, [128, 1, 1]], | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | |||
[[-1, 6], 1, Concat, [1]], # cat backbone P3 | |||
[-1, 1, Bottleneck, [256, False]], | |||
[-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small) | |||
[[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) | |||
] |
@@ -0,0 +1,41 @@ | |||
# parameters | |||
nc: 80 # number of classes | |||
depth_multiple: 1.0 # model depth multiple | |||
width_multiple: 1.0 # layer channel multiple | |||
# anchors | |||
anchors: | |||
- [10,14, 23,27, 37,58] # P4/16 | |||
- [81,82, 135,169, 344,319] # P5/32 | |||
# YOLOv3-tiny backbone | |||
backbone: | |||
# [from, number, module, args] | |||
[[-1, 1, Conv, [16, 3, 1]], # 0 | |||
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 1-P1/2 | |||
[-1, 1, Conv, [32, 3, 1]], | |||
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 3-P2/4 | |||
[-1, 1, Conv, [64, 3, 1]], | |||
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 5-P3/8 | |||
[-1, 1, Conv, [128, 3, 1]], | |||
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 7-P4/16 | |||
[-1, 1, Conv, [256, 3, 1]], | |||
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 9-P5/32 | |||
[-1, 1, Conv, [512, 3, 1]], | |||
[-1, 1, nn.ZeroPad2d, [[0, 1, 0, 1]]], # 11 | |||
[-1, 1, nn.MaxPool2d, [2, 1, 0]], # 12 | |||
] | |||
# YOLOv3-tiny head | |||
head: | |||
[[-1, 1, Conv, [1024, 3, 1]], | |||
[-1, 1, Conv, [256, 1, 1]], | |||
[-1, 1, Conv, [512, 3, 1]], # 15 (P5/32-large) | |||
[-2, 1, Conv, [128, 1, 1]], | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | |||
[[-1, 8], 1, Concat, [1]], # cat backbone P4 | |||
[-1, 1, Conv, [256, 3, 1]], # 19 (P4/16-medium) | |||
[[19, 15], 1, Detect, [nc, anchors]], # Detect(P4, P5) | |||
] |
@@ -0,0 +1,51 @@ | |||
# parameters | |||
nc: 80 # number of classes | |||
depth_multiple: 1.0 # model depth multiple | |||
width_multiple: 1.0 # layer channel multiple | |||
# anchors | |||
anchors: | |||
- [10,13, 16,30, 33,23] # P3/8 | |||
- [30,61, 62,45, 59,119] # P4/16 | |||
- [116,90, 156,198, 373,326] # P5/32 | |||
# darknet53 backbone | |||
backbone: | |||
# [from, number, module, args] | |||
[[-1, 1, Conv, [32, 3, 1]], # 0 | |||
[-1, 1, Conv, [64, 3, 2]], # 1-P1/2 | |||
[-1, 1, Bottleneck, [64]], | |||
[-1, 1, Conv, [128, 3, 2]], # 3-P2/4 | |||
[-1, 2, Bottleneck, [128]], | |||
[-1, 1, Conv, [256, 3, 2]], # 5-P3/8 | |||
[-1, 8, Bottleneck, [256]], | |||
[-1, 1, Conv, [512, 3, 2]], # 7-P4/16 | |||
[-1, 8, Bottleneck, [512]], | |||
[-1, 1, Conv, [1024, 3, 2]], # 9-P5/32 | |||
[-1, 4, Bottleneck, [1024]], # 10 | |||
] | |||
# YOLOv3 head | |||
head: | |||
[[-1, 1, Bottleneck, [1024, False]], | |||
[-1, 1, Conv, [512, [1, 1]]], | |||
[-1, 1, Conv, [1024, 3, 1]], | |||
[-1, 1, Conv, [512, 1, 1]], | |||
[-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large) | |||
[-2, 1, Conv, [256, 1, 1]], | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | |||
[[-1, 8], 1, Concat, [1]], # cat backbone P4 | |||
[-1, 1, Bottleneck, [512, False]], | |||
[-1, 1, Bottleneck, [512, False]], | |||
[-1, 1, Conv, [256, 1, 1]], | |||
[-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium) | |||
[-2, 1, Conv, [128, 1, 1]], | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | |||
[[-1, 6], 1, Concat, [1]], # cat backbone P3 | |||
[-1, 1, Bottleneck, [256, False]], | |||
[-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small) | |||
[[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) | |||
] |
@@ -0,0 +1,42 @@ | |||
# parameters | |||
nc: 80 # number of classes | |||
depth_multiple: 1.0 # model depth multiple | |||
width_multiple: 1.0 # layer channel multiple | |||
# anchors | |||
anchors: | |||
- [10,13, 16,30, 33,23] # P3/8 | |||
- [30,61, 62,45, 59,119] # P4/16 | |||
- [116,90, 156,198, 373,326] # P5/32 | |||
# YOLOv5 backbone | |||
backbone: | |||
# [from, number, module, args] | |||
[[-1, 1, Focus, [64, 3]], # 0-P1/2 | |||
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4 | |||
[-1, 3, Bottleneck, [128]], | |||
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8 | |||
[-1, 9, BottleneckCSP, [256]], | |||
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16 | |||
[-1, 9, BottleneckCSP, [512]], | |||
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 | |||
[-1, 1, SPP, [1024, [5, 9, 13]]], | |||
[-1, 6, BottleneckCSP, [1024]], # 9 | |||
] | |||
# YOLOv5 FPN head | |||
head: | |||
[[-1, 3, BottleneckCSP, [1024, False]], # 10 (P5/32-large) | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | |||
[[-1, 6], 1, Concat, [1]], # cat backbone P4 | |||
[-1, 1, Conv, [512, 1, 1]], | |||
[-1, 3, BottleneckCSP, [512, False]], # 14 (P4/16-medium) | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | |||
[[-1, 4], 1, Concat, [1]], # cat backbone P3 | |||
[-1, 1, Conv, [256, 1, 1]], | |||
[-1, 3, BottleneckCSP, [256, False]], # 18 (P3/8-small) | |||
[[18, 14, 10], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) | |||
] |
@@ -0,0 +1,54 @@ | |||
# parameters | |||
nc: 80 # number of classes | |||
depth_multiple: 1.0 # model depth multiple | |||
width_multiple: 1.0 # layer channel multiple | |||
# anchors | |||
anchors: 3 | |||
# YOLOv5 backbone | |||
backbone: | |||
# [from, number, module, args] | |||
[ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2 | |||
[ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4 | |||
[ -1, 3, C3, [ 128 ] ], | |||
[ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8 | |||
[ -1, 9, C3, [ 256 ] ], | |||
[ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16 | |||
[ -1, 9, C3, [ 512 ] ], | |||
[ -1, 1, Conv, [ 1024, 3, 2 ] ], # 7-P5/32 | |||
[ -1, 1, SPP, [ 1024, [ 5, 9, 13 ] ] ], | |||
[ -1, 3, C3, [ 1024, False ] ], # 9 | |||
] | |||
# YOLOv5 head | |||
head: | |||
[ [ -1, 1, Conv, [ 512, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4 | |||
[ -1, 3, C3, [ 512, False ] ], # 13 | |||
[ -1, 1, Conv, [ 256, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3 | |||
[ -1, 3, C3, [ 256, False ] ], # 17 (P3/8-small) | |||
[ -1, 1, Conv, [ 128, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 2 ], 1, Concat, [ 1 ] ], # cat backbone P2 | |||
[ -1, 1, C3, [ 128, False ] ], # 21 (P2/4-xsmall) | |||
[ -1, 1, Conv, [ 128, 3, 2 ] ], | |||
[ [ -1, 18 ], 1, Concat, [ 1 ] ], # cat head P3 | |||
[ -1, 3, C3, [ 256, False ] ], # 24 (P3/8-small) | |||
[ -1, 1, Conv, [ 256, 3, 2 ] ], | |||
[ [ -1, 14 ], 1, Concat, [ 1 ] ], # cat head P4 | |||
[ -1, 3, C3, [ 512, False ] ], # 27 (P4/16-medium) | |||
[ -1, 1, Conv, [ 512, 3, 2 ] ], | |||
[ [ -1, 10 ], 1, Concat, [ 1 ] ], # cat head P5 | |||
[ -1, 3, C3, [ 1024, False ] ], # 30 (P5/32-large) | |||
[ [ 24, 27, 30 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5) | |||
] |
@@ -0,0 +1,56 @@ | |||
# parameters | |||
nc: 80 # number of classes | |||
depth_multiple: 1.0 # model depth multiple | |||
width_multiple: 1.0 # layer channel multiple | |||
# anchors | |||
anchors: 3 | |||
# YOLOv5 backbone | |||
backbone: | |||
# [from, number, module, args] | |||
[ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2 | |||
[ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4 | |||
[ -1, 3, C3, [ 128 ] ], | |||
[ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8 | |||
[ -1, 9, C3, [ 256 ] ], | |||
[ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16 | |||
[ -1, 9, C3, [ 512 ] ], | |||
[ -1, 1, Conv, [ 768, 3, 2 ] ], # 7-P5/32 | |||
[ -1, 3, C3, [ 768 ] ], | |||
[ -1, 1, Conv, [ 1024, 3, 2 ] ], # 9-P6/64 | |||
[ -1, 1, SPP, [ 1024, [ 3, 5, 7 ] ] ], | |||
[ -1, 3, C3, [ 1024, False ] ], # 11 | |||
] | |||
# YOLOv5 head | |||
head: | |||
[ [ -1, 1, Conv, [ 768, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 8 ], 1, Concat, [ 1 ] ], # cat backbone P5 | |||
[ -1, 3, C3, [ 768, False ] ], # 15 | |||
[ -1, 1, Conv, [ 512, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4 | |||
[ -1, 3, C3, [ 512, False ] ], # 19 | |||
[ -1, 1, Conv, [ 256, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3 | |||
[ -1, 3, C3, [ 256, False ] ], # 23 (P3/8-small) | |||
[ -1, 1, Conv, [ 256, 3, 2 ] ], | |||
[ [ -1, 20 ], 1, Concat, [ 1 ] ], # cat head P4 | |||
[ -1, 3, C3, [ 512, False ] ], # 26 (P4/16-medium) | |||
[ -1, 1, Conv, [ 512, 3, 2 ] ], | |||
[ [ -1, 16 ], 1, Concat, [ 1 ] ], # cat head P5 | |||
[ -1, 3, C3, [ 768, False ] ], # 29 (P5/32-large) | |||
[ -1, 1, Conv, [ 768, 3, 2 ] ], | |||
[ [ -1, 12 ], 1, Concat, [ 1 ] ], # cat head P6 | |||
[ -1, 3, C3, [ 1024, False ] ], # 32 (P5/64-xlarge) | |||
[ [ 23, 26, 29, 32 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5, P6) | |||
] |
@@ -0,0 +1,67 @@ | |||
# parameters | |||
nc: 80 # number of classes | |||
depth_multiple: 1.0 # model depth multiple | |||
width_multiple: 1.0 # layer channel multiple | |||
# anchors | |||
anchors: 3 | |||
# YOLOv5 backbone | |||
backbone: | |||
# [from, number, module, args] | |||
[ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2 | |||
[ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4 | |||
[ -1, 3, C3, [ 128 ] ], | |||
[ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8 | |||
[ -1, 9, C3, [ 256 ] ], | |||
[ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16 | |||
[ -1, 9, C3, [ 512 ] ], | |||
[ -1, 1, Conv, [ 768, 3, 2 ] ], # 7-P5/32 | |||
[ -1, 3, C3, [ 768 ] ], | |||
[ -1, 1, Conv, [ 1024, 3, 2 ] ], # 9-P6/64 | |||
[ -1, 3, C3, [ 1024 ] ], | |||
[ -1, 1, Conv, [ 1280, 3, 2 ] ], # 11-P7/128 | |||
[ -1, 1, SPP, [ 1280, [ 3, 5 ] ] ], | |||
[ -1, 3, C3, [ 1280, False ] ], # 13 | |||
] | |||
# YOLOv5 head | |||
head: | |||
[ [ -1, 1, Conv, [ 1024, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 10 ], 1, Concat, [ 1 ] ], # cat backbone P6 | |||
[ -1, 3, C3, [ 1024, False ] ], # 17 | |||
[ -1, 1, Conv, [ 768, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 8 ], 1, Concat, [ 1 ] ], # cat backbone P5 | |||
[ -1, 3, C3, [ 768, False ] ], # 21 | |||
[ -1, 1, Conv, [ 512, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4 | |||
[ -1, 3, C3, [ 512, False ] ], # 25 | |||
[ -1, 1, Conv, [ 256, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3 | |||
[ -1, 3, C3, [ 256, False ] ], # 29 (P3/8-small) | |||
[ -1, 1, Conv, [ 256, 3, 2 ] ], | |||
[ [ -1, 26 ], 1, Concat, [ 1 ] ], # cat head P4 | |||
[ -1, 3, C3, [ 512, False ] ], # 32 (P4/16-medium) | |||
[ -1, 1, Conv, [ 512, 3, 2 ] ], | |||
[ [ -1, 22 ], 1, Concat, [ 1 ] ], # cat head P5 | |||
[ -1, 3, C3, [ 768, False ] ], # 35 (P5/32-large) | |||
[ -1, 1, Conv, [ 768, 3, 2 ] ], | |||
[ [ -1, 18 ], 1, Concat, [ 1 ] ], # cat head P6 | |||
[ -1, 3, C3, [ 1024, False ] ], # 38 (P6/64-xlarge) | |||
[ -1, 1, Conv, [ 1024, 3, 2 ] ], | |||
[ [ -1, 14 ], 1, Concat, [ 1 ] ], # cat head P7 | |||
[ -1, 3, C3, [ 1280, False ] ], # 41 (P7/128-xxlarge) | |||
[ [ 29, 32, 35, 38, 41 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5, P6, P7) | |||
] |
@@ -0,0 +1,48 @@ | |||
# parameters | |||
nc: 80 # number of classes | |||
depth_multiple: 1.0 # model depth multiple | |||
width_multiple: 1.0 # layer channel multiple | |||
# anchors | |||
anchors: | |||
- [10,13, 16,30, 33,23] # P3/8 | |||
- [30,61, 62,45, 59,119] # P4/16 | |||
- [116,90, 156,198, 373,326] # P5/32 | |||
# YOLOv5 backbone | |||
backbone: | |||
# [from, number, module, args] | |||
[[-1, 1, Focus, [64, 3]], # 0-P1/2 | |||
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4 | |||
[-1, 3, BottleneckCSP, [128]], | |||
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8 | |||
[-1, 9, BottleneckCSP, [256]], | |||
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16 | |||
[-1, 9, BottleneckCSP, [512]], | |||
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 | |||
[-1, 1, SPP, [1024, [5, 9, 13]]], | |||
[-1, 3, BottleneckCSP, [1024, False]], # 9 | |||
] | |||
# YOLOv5 PANet head | |||
head: | |||
[[-1, 1, Conv, [512, 1, 1]], | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | |||
[[-1, 6], 1, Concat, [1]], # cat backbone P4 | |||
[-1, 3, BottleneckCSP, [512, False]], # 13 | |||
[-1, 1, Conv, [256, 1, 1]], | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | |||
[[-1, 4], 1, Concat, [1]], # cat backbone P3 | |||
[-1, 3, BottleneckCSP, [256, False]], # 17 (P3/8-small) | |||
[-1, 1, Conv, [256, 3, 2]], | |||
[[-1, 14], 1, Concat, [1]], # cat head P4 | |||
[-1, 3, BottleneckCSP, [512, False]], # 20 (P4/16-medium) | |||
[-1, 1, Conv, [512, 3, 2]], | |||
[[-1, 10], 1, Concat, [1]], # cat head P5 | |||
[-1, 3, BottleneckCSP, [1024, False]], # 23 (P5/32-large) | |||
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) | |||
] |
@@ -0,0 +1,60 @@ | |||
# parameters | |||
nc: 80 # number of classes | |||
depth_multiple: 1.0 # model depth multiple | |||
width_multiple: 1.0 # layer channel multiple | |||
# anchors | |||
anchors: | |||
- [ 19,27, 44,40, 38,94 ] # P3/8 | |||
- [ 96,68, 86,152, 180,137 ] # P4/16 | |||
- [ 140,301, 303,264, 238,542 ] # P5/32 | |||
- [ 436,615, 739,380, 925,792 ] # P6/64 | |||
# YOLOv5 backbone | |||
backbone: | |||
# [from, number, module, args] | |||
[ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2 | |||
[ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4 | |||
[ -1, 3, C3, [ 128 ] ], | |||
[ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8 | |||
[ -1, 9, C3, [ 256 ] ], | |||
[ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16 | |||
[ -1, 9, C3, [ 512 ] ], | |||
[ -1, 1, Conv, [ 768, 3, 2 ] ], # 7-P5/32 | |||
[ -1, 3, C3, [ 768 ] ], | |||
[ -1, 1, Conv, [ 1024, 3, 2 ] ], # 9-P6/64 | |||
[ -1, 1, SPP, [ 1024, [ 3, 5, 7 ] ] ], | |||
[ -1, 3, C3, [ 1024, False ] ], # 11 | |||
] | |||
# YOLOv5 head | |||
head: | |||
[ [ -1, 1, Conv, [ 768, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 8 ], 1, Concat, [ 1 ] ], # cat backbone P5 | |||
[ -1, 3, C3, [ 768, False ] ], # 15 | |||
[ -1, 1, Conv, [ 512, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4 | |||
[ -1, 3, C3, [ 512, False ] ], # 19 | |||
[ -1, 1, Conv, [ 256, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3 | |||
[ -1, 3, C3, [ 256, False ] ], # 23 (P3/8-small) | |||
[ -1, 1, Conv, [ 256, 3, 2 ] ], | |||
[ [ -1, 20 ], 1, Concat, [ 1 ] ], # cat head P4 | |||
[ -1, 3, C3, [ 512, False ] ], # 26 (P4/16-medium) | |||
[ -1, 1, Conv, [ 512, 3, 2 ] ], | |||
[ [ -1, 16 ], 1, Concat, [ 1 ] ], # cat head P5 | |||
[ -1, 3, C3, [ 768, False ] ], # 29 (P5/32-large) | |||
[ -1, 1, Conv, [ 768, 3, 2 ] ], | |||
[ [ -1, 12 ], 1, Concat, [ 1 ] ], # cat head P6 | |||
[ -1, 3, C3, [ 1024, False ] ], # 32 (P6/64-xlarge) | |||
[ [ 23, 26, 29, 32 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5, P6) | |||
] |
@@ -0,0 +1,60 @@ | |||
# parameters | |||
nc: 80 # number of classes | |||
depth_multiple: 0.67 # model depth multiple | |||
width_multiple: 0.75 # layer channel multiple | |||
# anchors | |||
anchors: | |||
- [ 19,27, 44,40, 38,94 ] # P3/8 | |||
- [ 96,68, 86,152, 180,137 ] # P4/16 | |||
- [ 140,301, 303,264, 238,542 ] # P5/32 | |||
- [ 436,615, 739,380, 925,792 ] # P6/64 | |||
# YOLOv5 backbone | |||
backbone: | |||
# [from, number, module, args] | |||
[ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2 | |||
[ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4 | |||
[ -1, 3, C3, [ 128 ] ], | |||
[ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8 | |||
[ -1, 9, C3, [ 256 ] ], | |||
[ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16 | |||
[ -1, 9, C3, [ 512 ] ], | |||
[ -1, 1, Conv, [ 768, 3, 2 ] ], # 7-P5/32 | |||
[ -1, 3, C3, [ 768 ] ], | |||
[ -1, 1, Conv, [ 1024, 3, 2 ] ], # 9-P6/64 | |||
[ -1, 1, SPP, [ 1024, [ 3, 5, 7 ] ] ], | |||
[ -1, 3, C3, [ 1024, False ] ], # 11 | |||
] | |||
# YOLOv5 head | |||
head: | |||
[ [ -1, 1, Conv, [ 768, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 8 ], 1, Concat, [ 1 ] ], # cat backbone P5 | |||
[ -1, 3, C3, [ 768, False ] ], # 15 | |||
[ -1, 1, Conv, [ 512, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4 | |||
[ -1, 3, C3, [ 512, False ] ], # 19 | |||
[ -1, 1, Conv, [ 256, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3 | |||
[ -1, 3, C3, [ 256, False ] ], # 23 (P3/8-small) | |||
[ -1, 1, Conv, [ 256, 3, 2 ] ], | |||
[ [ -1, 20 ], 1, Concat, [ 1 ] ], # cat head P4 | |||
[ -1, 3, C3, [ 512, False ] ], # 26 (P4/16-medium) | |||
[ -1, 1, Conv, [ 512, 3, 2 ] ], | |||
[ [ -1, 16 ], 1, Concat, [ 1 ] ], # cat head P5 | |||
[ -1, 3, C3, [ 768, False ] ], # 29 (P5/32-large) | |||
[ -1, 1, Conv, [ 768, 3, 2 ] ], | |||
[ [ -1, 12 ], 1, Concat, [ 1 ] ], # cat head P6 | |||
[ -1, 3, C3, [ 1024, False ] ], # 32 (P6/64-xlarge) | |||
[ [ 23, 26, 29, 32 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5, P6) | |||
] |
@@ -0,0 +1,48 @@ | |||
# parameters | |||
nc: 80 # number of classes | |||
depth_multiple: 0.33 # model depth multiple | |||
width_multiple: 0.50 # layer channel multiple | |||
# anchors | |||
anchors: | |||
- [10,13, 16,30, 33,23] # P3/8 | |||
- [30,61, 62,45, 59,119] # P4/16 | |||
- [116,90, 156,198, 373,326] # P5/32 | |||
# YOLOv5 backbone | |||
backbone: | |||
# [from, number, module, args] | |||
[[-1, 1, Focus, [64, 3]], # 0-P1/2 | |||
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4 | |||
[-1, 3, C3, [128]], | |||
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8 | |||
[-1, 9, C3, [256]], | |||
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16 | |||
[-1, 9, C3, [512]], | |||
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 | |||
[-1, 1, SPP, [1024, [5, 9, 13]]], | |||
[-1, 3, C3TR, [1024, False]], # 9 <-------- C3TR() Transformer module | |||
] | |||
# YOLOv5 head | |||
head: | |||
[[-1, 1, Conv, [512, 1, 1]], | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | |||
[[-1, 6], 1, Concat, [1]], # cat backbone P4 | |||
[-1, 3, C3, [512, False]], # 13 | |||
[-1, 1, Conv, [256, 1, 1]], | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | |||
[[-1, 4], 1, Concat, [1]], # cat backbone P3 | |||
[-1, 3, C3, [256, False]], # 17 (P3/8-small) | |||
[-1, 1, Conv, [256, 3, 2]], | |||
[[-1, 14], 1, Concat, [1]], # cat head P4 | |||
[-1, 3, C3, [512, False]], # 20 (P4/16-medium) | |||
[-1, 1, Conv, [512, 3, 2]], | |||
[[-1, 10], 1, Concat, [1]], # cat head P5 | |||
[-1, 3, C3, [1024, False]], # 23 (P5/32-large) | |||
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) | |||
] |
@@ -0,0 +1,60 @@ | |||
# parameters | |||
nc: 80 # number of classes | |||
depth_multiple: 0.33 # model depth multiple | |||
width_multiple: 0.50 # layer channel multiple | |||
# anchors | |||
anchors: | |||
- [ 19,27, 44,40, 38,94 ] # P3/8 | |||
- [ 96,68, 86,152, 180,137 ] # P4/16 | |||
- [ 140,301, 303,264, 238,542 ] # P5/32 | |||
- [ 436,615, 739,380, 925,792 ] # P6/64 | |||
# YOLOv5 backbone | |||
backbone: | |||
# [from, number, module, args] | |||
[ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2 | |||
[ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4 | |||
[ -1, 3, C3, [ 128 ] ], | |||
[ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8 | |||
[ -1, 9, C3, [ 256 ] ], | |||
[ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16 | |||
[ -1, 9, C3, [ 512 ] ], | |||
[ -1, 1, Conv, [ 768, 3, 2 ] ], # 7-P5/32 | |||
[ -1, 3, C3, [ 768 ] ], | |||
[ -1, 1, Conv, [ 1024, 3, 2 ] ], # 9-P6/64 | |||
[ -1, 1, SPP, [ 1024, [ 3, 5, 7 ] ] ], | |||
[ -1, 3, C3, [ 1024, False ] ], # 11 | |||
] | |||
# YOLOv5 head | |||
head: | |||
[ [ -1, 1, Conv, [ 768, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 8 ], 1, Concat, [ 1 ] ], # cat backbone P5 | |||
[ -1, 3, C3, [ 768, False ] ], # 15 | |||
[ -1, 1, Conv, [ 512, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4 | |||
[ -1, 3, C3, [ 512, False ] ], # 19 | |||
[ -1, 1, Conv, [ 256, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3 | |||
[ -1, 3, C3, [ 256, False ] ], # 23 (P3/8-small) | |||
[ -1, 1, Conv, [ 256, 3, 2 ] ], | |||
[ [ -1, 20 ], 1, Concat, [ 1 ] ], # cat head P4 | |||
[ -1, 3, C3, [ 512, False ] ], # 26 (P4/16-medium) | |||
[ -1, 1, Conv, [ 512, 3, 2 ] ], | |||
[ [ -1, 16 ], 1, Concat, [ 1 ] ], # cat head P5 | |||
[ -1, 3, C3, [ 768, False ] ], # 29 (P5/32-large) | |||
[ -1, 1, Conv, [ 768, 3, 2 ] ], | |||
[ [ -1, 12 ], 1, Concat, [ 1 ] ], # cat head P6 | |||
[ -1, 3, C3, [ 1024, False ] ], # 32 (P6/64-xlarge) | |||
[ [ 23, 26, 29, 32 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5, P6) | |||
] |
@@ -0,0 +1,60 @@ | |||
# parameters | |||
nc: 80 # number of classes | |||
depth_multiple: 1.33 # model depth multiple | |||
width_multiple: 1.25 # layer channel multiple | |||
# anchors | |||
anchors: | |||
- [ 19,27, 44,40, 38,94 ] # P3/8 | |||
- [ 96,68, 86,152, 180,137 ] # P4/16 | |||
- [ 140,301, 303,264, 238,542 ] # P5/32 | |||
- [ 436,615, 739,380, 925,792 ] # P6/64 | |||
# YOLOv5 backbone | |||
backbone: | |||
# [from, number, module, args] | |||
[ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2 | |||
[ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4 | |||
[ -1, 3, C3, [ 128 ] ], | |||
[ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8 | |||
[ -1, 9, C3, [ 256 ] ], | |||
[ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16 | |||
[ -1, 9, C3, [ 512 ] ], | |||
[ -1, 1, Conv, [ 768, 3, 2 ] ], # 7-P5/32 | |||
[ -1, 3, C3, [ 768 ] ], | |||
[ -1, 1, Conv, [ 1024, 3, 2 ] ], # 9-P6/64 | |||
[ -1, 1, SPP, [ 1024, [ 3, 5, 7 ] ] ], | |||
[ -1, 3, C3, [ 1024, False ] ], # 11 | |||
] | |||
# YOLOv5 head | |||
head: | |||
[ [ -1, 1, Conv, [ 768, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 8 ], 1, Concat, [ 1 ] ], # cat backbone P5 | |||
[ -1, 3, C3, [ 768, False ] ], # 15 | |||
[ -1, 1, Conv, [ 512, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4 | |||
[ -1, 3, C3, [ 512, False ] ], # 19 | |||
[ -1, 1, Conv, [ 256, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3 | |||
[ -1, 3, C3, [ 256, False ] ], # 23 (P3/8-small) | |||
[ -1, 1, Conv, [ 256, 3, 2 ] ], | |||
[ [ -1, 20 ], 1, Concat, [ 1 ] ], # cat head P4 | |||
[ -1, 3, C3, [ 512, False ] ], # 26 (P4/16-medium) | |||
[ -1, 1, Conv, [ 512, 3, 2 ] ], | |||
[ [ -1, 16 ], 1, Concat, [ 1 ] ], # cat head P5 | |||
[ -1, 3, C3, [ 768, False ] ], # 29 (P5/32-large) | |||
[ -1, 1, Conv, [ 768, 3, 2 ] ], | |||
[ [ -1, 12 ], 1, Concat, [ 1 ] ], # cat head P6 | |||
[ -1, 3, C3, [ 1024, False ] ], # 32 (P6/64-xlarge) | |||
[ [ 23, 26, 29, 32 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5, P6) | |||
] |
@@ -0,0 +1,277 @@ | |||
# YOLOv5 YOLO-specific modules | |||
import argparse | |||
import logging | |||
import sys | |||
from copy import deepcopy | |||
sys.path.append('./') # to run '$ python *.py' files in subdirectories | |||
logger = logging.getLogger(__name__) | |||
from models.common import * | |||
from models.experimental import * | |||
from utils.autoanchor import check_anchor_order | |||
from utils.general import make_divisible, check_file, set_logging | |||
from utils.torch_utils import time_synchronized, fuse_conv_and_bn, model_info, scale_img, initialize_weights, \ | |||
select_device, copy_attr | |||
try: | |||
import thop # for FLOPS computation | |||
except ImportError: | |||
thop = None | |||
class Detect(nn.Module): | |||
stride = None # strides computed during build | |||
export = False # onnx export | |||
def __init__(self, nc=80, anchors=(), ch=()): # detection layer | |||
super(Detect, self).__init__() | |||
self.nc = nc # number of classes | |||
self.no = nc + 5 # number of outputs per anchor | |||
self.nl = len(anchors) # number of detection layers | |||
self.na = len(anchors[0]) // 2 # number of anchors | |||
self.grid = [torch.zeros(1)] * self.nl # init grid | |||
a = torch.tensor(anchors).float().view(self.nl, -1, 2) | |||
self.register_buffer('anchors', a) # shape(nl,na,2) | |||
self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2) | |||
self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv | |||
def forward(self, x): | |||
# x = x.copy() # for profiling | |||
z = [] # inference output | |||
self.training |= self.export | |||
for i in range(self.nl): | |||
x[i] = self.m[i](x[i]) # conv | |||
bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85) | |||
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous() | |||
if not self.training: # inference | |||
if self.grid[i].shape[2:4] != x[i].shape[2:4]: | |||
self.grid[i] = self._make_grid(nx, ny).to(x[i].device) | |||
y = x[i].sigmoid() | |||
y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy | |||
y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh | |||
z.append(y.view(bs, -1, self.no)) | |||
return x if self.training else (torch.cat(z, 1), x) | |||
@staticmethod | |||
def _make_grid(nx=20, ny=20): | |||
yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)]) | |||
return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float() | |||
class Model(nn.Module): | |||
def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None): # model, input channels, number of classes | |||
super(Model, self).__init__() | |||
if isinstance(cfg, dict): | |||
self.yaml = cfg # model dict | |||
else: # is *.yaml | |||
import yaml # for torch hub | |||
self.yaml_file = Path(cfg).name | |||
with open(cfg) as f: | |||
self.yaml = yaml.load(f, Loader=yaml.SafeLoader) # model dict | |||
# Define model | |||
ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels | |||
if nc and nc != self.yaml['nc']: | |||
logger.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}") | |||
self.yaml['nc'] = nc # override yaml value | |||
if anchors: | |||
logger.info(f'Overriding model.yaml anchors with anchors={anchors}') | |||
self.yaml['anchors'] = round(anchors) # override yaml value | |||
self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist | |||
self.names = [str(i) for i in range(self.yaml['nc'])] # default names | |||
# print([x.shape for x in self.forward(torch.zeros(1, ch, 64, 64))]) | |||
# Build strides, anchors | |||
m = self.model[-1] # Detect() | |||
if isinstance(m, Detect): | |||
s = 256 # 2x min stride | |||
m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward | |||
m.anchors /= m.stride.view(-1, 1, 1) | |||
check_anchor_order(m) | |||
self.stride = m.stride | |||
self._initialize_biases() # only run once | |||
# print('Strides: %s' % m.stride.tolist()) | |||
# Init weights, biases | |||
initialize_weights(self) | |||
self.info() | |||
logger.info('') | |||
def forward(self, x, augment=False, profile=False): | |||
if augment: | |||
img_size = x.shape[-2:] # height, width | |||
s = [1, 0.83, 0.67] # scales | |||
f = [None, 3, None] # flips (2-ud, 3-lr) | |||
y = [] # outputs | |||
for si, fi in zip(s, f): | |||
xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max())) | |||
yi = self.forward_once(xi)[0] # forward | |||
# cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # save | |||
yi[..., :4] /= si # de-scale | |||
if fi == 2: | |||
yi[..., 1] = img_size[0] - yi[..., 1] # de-flip ud | |||
elif fi == 3: | |||
yi[..., 0] = img_size[1] - yi[..., 0] # de-flip lr | |||
y.append(yi) | |||
return torch.cat(y, 1), None # augmented inference, train | |||
else: | |||
return self.forward_once(x, profile) # single-scale inference, train | |||
def forward_once(self, x, profile=False): | |||
y, dt = [], [] # outputs | |||
for m in self.model: | |||
if m.f != -1: # if not from previous layer | |||
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers | |||
if profile: | |||
o = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPS | |||
t = time_synchronized() | |||
for _ in range(10): | |||
_ = m(x) | |||
dt.append((time_synchronized() - t) * 100) | |||
print('%10.1f%10.0f%10.1fms %-40s' % (o, m.np, dt[-1], m.type)) | |||
x = m(x) # run | |||
y.append(x if m.i in self.save else None) # save output | |||
if profile: | |||
print('%.1fms total' % sum(dt)) | |||
return x | |||
def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency | |||
# https://arxiv.org/abs/1708.02002 section 3.3 | |||
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1. | |||
m = self.model[-1] # Detect() module | |||
for mi, s in zip(m.m, m.stride): # from | |||
b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85) | |||
b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image) | |||
b.data[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls | |||
mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True) | |||
def _print_biases(self): | |||
m = self.model[-1] # Detect() module | |||
for mi in m.m: # from | |||
b = mi.bias.detach().view(m.na, -1).T # conv.bias(255) to (3,85) | |||
print(('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean())) | |||
# def _print_weights(self): | |||
# for m in self.model.modules(): | |||
# if type(m) is Bottleneck: | |||
# print('%10.3g' % (m.w.detach().sigmoid() * 2)) # shortcut weights | |||
def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers | |||
print('Fusing layers... ') | |||
for m in self.model.modules(): | |||
if type(m) is Conv and hasattr(m, 'bn'): | |||
m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv | |||
delattr(m, 'bn') # remove batchnorm | |||
m.forward = m.fuseforward # update forward | |||
self.info() | |||
return self | |||
def nms(self, mode=True): # add or remove NMS module | |||
present = type(self.model[-1]) is NMS # last layer is NMS | |||
if mode and not present: | |||
print('Adding NMS... ') | |||
m = NMS() # module | |||
m.f = -1 # from | |||
m.i = self.model[-1].i + 1 # index | |||
self.model.add_module(name='%s' % m.i, module=m) # add | |||
self.eval() | |||
elif not mode and present: | |||
print('Removing NMS... ') | |||
self.model = self.model[:-1] # remove | |||
return self | |||
def autoshape(self): # add autoShape module | |||
print('Adding autoShape... ') | |||
m = autoShape(self) # wrap model | |||
copy_attr(m, self, include=('yaml', 'nc', 'hyp', 'names', 'stride'), exclude=()) # copy attributes | |||
return m | |||
def info(self, verbose=False, img_size=640): # print model information | |||
model_info(self, verbose, img_size) | |||
def parse_model(d, ch): # model_dict, input_channels(3) | |||
logger.info('\n%3s%18s%3s%10s %-40s%-30s' % ('', 'from', 'n', 'params', 'module', 'arguments')) | |||
anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple'] | |||
na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors | |||
no = na * (nc + 5) # number of outputs = anchors * (classes + 5) | |||
layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out | |||
for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args | |||
m = eval(m) if isinstance(m, str) else m # eval strings | |||
for j, a in enumerate(args): | |||
try: | |||
args[j] = eval(a) if isinstance(a, str) else a # eval strings | |||
except: | |||
pass | |||
n = max(round(n * gd), 1) if n > 1 else n # depth gain | |||
if m in [Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP, | |||
C3, C3TR]: | |||
c1, c2 = ch[f], args[0] | |||
if c2 != no: # if not output | |||
c2 = make_divisible(c2 * gw, 8) | |||
args = [c1, c2, *args[1:]] | |||
if m in [BottleneckCSP, C3, C3TR]: | |||
args.insert(2, n) # number of repeats | |||
n = 1 | |||
elif m is nn.BatchNorm2d: | |||
args = [ch[f]] | |||
elif m is Concat: | |||
c2 = sum([ch[x] for x in f]) | |||
elif m is Detect: | |||
args.append([ch[x] for x in f]) | |||
if isinstance(args[1], int): # number of anchors | |||
args[1] = [list(range(args[1] * 2))] * len(f) | |||
elif m is Contract: | |||
c2 = ch[f] * args[0] ** 2 | |||
elif m is Expand: | |||
c2 = ch[f] // args[0] ** 2 | |||
else: | |||
c2 = ch[f] | |||
m_ = nn.Sequential(*[m(*args) for _ in range(n)]) if n > 1 else m(*args) # module | |||
t = str(m)[8:-2].replace('__main__.', '') # module type | |||
np = sum([x.numel() for x in m_.parameters()]) # number params | |||
m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params | |||
logger.info('%3s%18s%3s%10.0f %-40s%-30s' % (i, f, n, np, t, args)) # print | |||
save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist | |||
layers.append(m_) | |||
if i == 0: | |||
ch = [] | |||
ch.append(c2) | |||
return nn.Sequential(*layers), sorted(save) | |||
if __name__ == '__main__': | |||
parser = argparse.ArgumentParser() | |||
parser.add_argument('--cfg', type=str, default='yolov5s.yaml', help='model.yaml') | |||
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') | |||
opt = parser.parse_args() | |||
opt.cfg = check_file(opt.cfg) # check file | |||
set_logging() | |||
device = select_device(opt.device) | |||
# Create model | |||
model = Model(opt.cfg).to(device) | |||
model.train() | |||
# Profile | |||
# img = torch.rand(8 if torch.cuda.is_available() else 1, 3, 640, 640).to(device) | |||
# y = model(img, profile=True) | |||
# Tensorboard | |||
# from torch.utils.tensorboard import SummaryWriter | |||
# tb_writer = SummaryWriter() | |||
# print("Run 'tensorboard --logdir=models/runs' to view tensorboard at http://localhost:6006/") | |||
# tb_writer.add_graph(model.model, img) # add model to tensorboard | |||
# tb_writer.add_image('test', img[0], dataformats='CWH') # add model to tensorboard |
@@ -0,0 +1,34 @@ | |||
import numpy as np | |||
import torch | |||
from utils.datasets import letterbox | |||
from utils.general import non_max_suppression, overlap_box_suppression, scale_coords | |||
def yolo_process(img0, model, device, args, half): | |||
# Padded resize | |||
stride = int(model.stride.max()) # model stride | |||
img, ratio, (dw, dh) = letterbox(img0, args.yoloimg_size, stride=stride) | |||
# Convert | |||
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416 | |||
img = np.ascontiguousarray(img) | |||
img = torch.from_numpy(img).to(device) | |||
img = img.half() if half else img.float() # uint8 to fp16/32 | |||
img /= 255.0 # 0 - 255 to 0.0 - 1.0 | |||
if img.ndimension() == 3: | |||
img = img.unsqueeze(0) | |||
pred = model(img, augment=args.augment)[0] | |||
# Apply NMS | |||
pred = non_max_suppression(pred, args.conf_thres, args.iou_thres, classes=args.classes, agnostic=args.agnostic_nms) | |||
pred = overlap_box_suppression(pred, args.ovlap_thres) | |||
###一次检测一张图片 | |||
det = pred[0] | |||
if len(det): | |||
# Rescale boxes from img_size to im0 size | |||
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], img0.shape).round() | |||
return det |
@@ -0,0 +1,48 @@ | |||
# parameters | |||
nc: 80 # number of classes | |||
depth_multiple: 1.0 # model depth multiple | |||
width_multiple: 1.0 # layer channel multiple | |||
# anchors | |||
anchors: | |||
- [10,13, 16,30, 33,23] # P3/8 | |||
- [30,61, 62,45, 59,119] # P4/16 | |||
- [116,90, 156,198, 373,326] # P5/32 | |||
# YOLOv5 backbone | |||
backbone: | |||
# [from, number, module, args] | |||
[[-1, 1, Focus, [64, 3]], # 0-P1/2 | |||
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4 | |||
[-1, 3, C3, [128]], | |||
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8 | |||
[-1, 9, C3, [256]], | |||
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16 | |||
[-1, 9, C3, [512]], | |||
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 | |||
[-1, 1, SPP, [1024, [5, 9, 13]]], | |||
[-1, 3, C3, [1024, False]], # 9 | |||
] | |||
# YOLOv5 head | |||
head: | |||
[[-1, 1, Conv, [512, 1, 1]], | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | |||
[[-1, 6], 1, Concat, [1]], # cat backbone P4 | |||
[-1, 3, C3, [512, False]], # 13 | |||
[-1, 1, Conv, [256, 1, 1]], | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | |||
[[-1, 4], 1, Concat, [1]], # cat backbone P3 | |||
[-1, 3, C3, [256, False]], # 17 (P3/8-small) | |||
[-1, 1, Conv, [256, 3, 2]], | |||
[[-1, 14], 1, Concat, [1]], # cat head P4 | |||
[-1, 3, C3, [512, False]], # 20 (P4/16-medium) | |||
[-1, 1, Conv, [512, 3, 2]], | |||
[[-1, 10], 1, Concat, [1]], # cat head P5 | |||
[-1, 3, C3, [1024, False]], # 23 (P5/32-large) | |||
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) | |||
] |
@@ -0,0 +1,48 @@ | |||
# parameters | |||
nc: 80 # number of classes | |||
depth_multiple: 0.67 # model depth multiple | |||
width_multiple: 0.75 # layer channel multiple | |||
# anchors | |||
anchors: | |||
- [10,13, 16,30, 33,23] # P3/8 | |||
- [30,61, 62,45, 59,119] # P4/16 | |||
- [116,90, 156,198, 373,326] # P5/32 | |||
# YOLOv5 backbone | |||
backbone: | |||
# [from, number, module, args] | |||
[[-1, 1, Focus, [64, 3]], # 0-P1/2 | |||
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4 | |||
[-1, 3, C3, [128]], | |||
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8 | |||
[-1, 9, C3, [256]], | |||
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16 | |||
[-1, 9, C3, [512]], | |||
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 | |||
[-1, 1, SPP, [1024, [5, 9, 13]]], | |||
[-1, 3, C3, [1024, False]], # 9 | |||
] | |||
# YOLOv5 head | |||
head: | |||
[[-1, 1, Conv, [512, 1, 1]], | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | |||
[[-1, 6], 1, Concat, [1]], # cat backbone P4 | |||
[-1, 3, C3, [512, False]], # 13 | |||
[-1, 1, Conv, [256, 1, 1]], | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | |||
[[-1, 4], 1, Concat, [1]], # cat backbone P3 | |||
[-1, 3, C3, [256, False]], # 17 (P3/8-small) | |||
[-1, 1, Conv, [256, 3, 2]], | |||
[[-1, 14], 1, Concat, [1]], # cat head P4 | |||
[-1, 3, C3, [512, False]], # 20 (P4/16-medium) | |||
[-1, 1, Conv, [512, 3, 2]], | |||
[[-1, 10], 1, Concat, [1]], # cat head P5 | |||
[-1, 3, C3, [1024, False]], # 23 (P5/32-large) | |||
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) | |||
] |
@@ -0,0 +1,48 @@ | |||
# parameters | |||
nc: 80 # number of classes | |||
depth_multiple: 0.33 # model depth multiple | |||
width_multiple: 0.50 # layer channel multiple | |||
# anchors | |||
anchors: | |||
- [10,13, 16,30, 33,23] # P3/8 | |||
- [30,61, 62,45, 59,119] # P4/16 | |||
- [116,90, 156,198, 373,326] # P5/32 | |||
# YOLOv5 backbone | |||
backbone: | |||
# [from, number, module, args] | |||
[[-1, 1, Focus, [64, 3]], # 0-P1/2 | |||
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4 | |||
[-1, 3, C3, [128]], | |||
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8 | |||
[-1, 9, C3, [256]], | |||
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16 | |||
[-1, 9, C3, [512]], | |||
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 | |||
[-1, 1, SPP, [1024, [5, 9, 13]]], | |||
[-1, 3, C3, [1024, False]], # 9 | |||
] | |||
# YOLOv5 head | |||
head: | |||
[[-1, 1, Conv, [512, 1, 1]], | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | |||
[[-1, 6], 1, Concat, [1]], # cat backbone P4 | |||
[-1, 3, C3, [512, False]], # 13 | |||
[-1, 1, Conv, [256, 1, 1]], | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | |||
[[-1, 4], 1, Concat, [1]], # cat backbone P3 | |||
[-1, 3, C3, [256, False]], # 17 (P3/8-small) | |||
[-1, 1, Conv, [256, 3, 2]], | |||
[[-1, 14], 1, Concat, [1]], # cat head P4 | |||
[-1, 3, C3, [512, False]], # 20 (P4/16-medium) | |||
[-1, 1, Conv, [512, 3, 2]], | |||
[[-1, 10], 1, Concat, [1]], # cat head P5 | |||
[-1, 3, C3, [1024, False]], # 23 (P5/32-large) | |||
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) | |||
] |
@@ -0,0 +1,48 @@ | |||
# parameters | |||
nc: 80 # number of classes | |||
depth_multiple: 1.33 # model depth multiple | |||
width_multiple: 1.25 # layer channel multiple | |||
# anchors | |||
anchors: | |||
- [10,13, 16,30, 33,23] # P3/8 | |||
- [30,61, 62,45, 59,119] # P4/16 | |||
- [116,90, 156,198, 373,326] # P5/32 | |||
# YOLOv5 backbone | |||
backbone: | |||
# [from, number, module, args] | |||
[[-1, 1, Focus, [64, 3]], # 0-P1/2 | |||
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4 | |||
[-1, 3, C3, [128]], | |||
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8 | |||
[-1, 9, C3, [256]], | |||
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16 | |||
[-1, 9, C3, [512]], | |||
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 | |||
[-1, 1, SPP, [1024, [5, 9, 13]]], | |||
[-1, 3, C3, [1024, False]], # 9 | |||
] | |||
# YOLOv5 head | |||
head: | |||
[[-1, 1, Conv, [512, 1, 1]], | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | |||
[[-1, 6], 1, Concat, [1]], # cat backbone P4 | |||
[-1, 3, C3, [512, False]], # 13 | |||
[-1, 1, Conv, [256, 1, 1]], | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | |||
[[-1, 4], 1, Concat, [1]], # cat backbone P3 | |||
[-1, 3, C3, [256, False]], # 17 (P3/8-small) | |||
[-1, 1, Conv, [256, 3, 2]], | |||
[[-1, 14], 1, Concat, [1]], # cat head P4 | |||
[-1, 3, C3, [512, False]], # 20 (P4/16-medium) | |||
[-1, 1, Conv, [512, 3, 2]], | |||
[[-1, 10], 1, Concat, [1]], # cat head P5 | |||
[-1, 3, C3, [1024, False]], # 23 (P5/32-large) | |||
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) | |||
] |