|
- import os
- import time
-
- import cv2
- import numpy as np
- import torch
-
- from DMPRUtils.DMPR_process import DMPR_process, plot_points
- from DMPRUtils.model.detector import DirectionalPointDetector
- from DMPRUtils.yolo_net import Model
- from DMPR_YOLO.jointUtil import dmpr_yolo
- from STDCUtils.STDC_process import STDC_process
- from STDCUtils.models.model_stages import BiSeNet
- from STDC_YOLO.yolo_stdc_joint import stdc_yolo
- from conf import config
- from models.experimental import attempt_load
- from models.yolo_process import yolo_process
- from utils.plots import plot_one_box
- from utils.torch_utils import select_device
-
-
- def main():
- ##预先设置的参数
- device_ = '0' ##选定模型,可选 cpu,'0','1'
-
- ##以下参数目前不可改
- Detweights = 'weights/urbanManagement/yolo/best1201.pt'
- seg_nclass = 2
- DMPRweights = "weights/urbanManagement/DMPR/dp_detector_372_1204.pth"
- conf_thres, iou_thres, classes = 0.25, 0.45, 3
- labelnames = "weights/yolov5/class5/labelnames.json"
- rainbows = [[0, 0, 255], [0, 255, 0], [255, 0, 0], [255, 0, 255], [255, 255, 0], [255, 129, 0], [255, 0, 127],
- [127, 255, 0], [0, 255, 127], [0, 127, 255], [127, 0, 255], [255, 127, 255], [255, 255, 127],
- [127, 255, 255], [0, 255, 255], [255, 127, 255], [127, 255, 255], [0, 127, 0], [0, 0, 127],
- [0, 255, 255]]
- allowedList = [0, 1, 2, 3]
-
- ##加载模型,准备好显示字符
- device = select_device(device_)
-
- half = device.type != 'cpu' # half precision only supported on CUDA
- # yolov5 model
- model = attempt_load(Detweights, map_location=device)
- if half:
- model.half()
-
- # load args
- args = config.get_parser_for_inference().parse_args()
-
- # STDC model
- STDC_model = BiSeNet(backbone=args.backbone, n_classes=args.n_classes,
- use_boundary_2=args.use_boundary_2, use_boundary_4=args.use_boundary_4,
- use_boundary_8=args.use_boundary_8, use_boundary_16=args.use_boundary_16,
- use_conv_last=args.use_conv_last).to(device)
- STDC_model.load_state_dict(torch.load(args.respth))
- STDC_model.eval()
-
- # DMPR model
- # DMPRmodel = DirectionalPointDetector(3, args.depth_factor, config.NUM_FEATURE_MAP_CHANNEL).to(device)
- # DMPRmodel.load_state_dict(torch.load(DMPRweights))
- DMPRmodel = Model(args.cfg, ch=3).to(device)
- DMPRmodel.load_state_dict(torch.load(DMPRweights))
-
- # 图像测试
- # impth = 'images/input'
- # impth = 'images/debug'
- # impth = '/home/thsw/ssd/zjc/cityManagement_test'
- impth = '/home/thsw/WJ/zjc/AI/images/pic2'
- # impth = '/home/thsw/WJ/zjc/AI_old/images/input_0'
- # outpth = 'images/output'
- outpth = 'images/debug_out'
- folders = os.listdir(impth)
- for file in folders:
- imgpath = os.path.join(impth, file)
- img0 = cv2.imread(imgpath)
- assert img0 is not None, 'Image Not Found ' + imgpath
-
- t_start = time.time()
- # yolo process
- det0 = yolo_process(img0, model, device, args, half)
- det0 = det0.cpu().detach().numpy()
- t_yolo = time.time()
- print(f't_yolo. ({t_yolo - t_start:.3f}s)')
-
- t_stdc = time.time()
- # STDC process
- det2 = STDC_process(img0, STDC_model, device, args.stdc_new_hw)
- det2[det2 == 1] = 255
- t_stdc_inf = time.time()
- print(f't_stdc_inf. ({t_stdc_inf - t_stdc:.3f}s)')
- # STDC joint yolo
- det0 = stdc_yolo(det2, det0)
- t_stdc_yolo = time.time()
- print(f't_stdc_joint. ({t_stdc_yolo - t_stdc_inf:.3f}s)')
- # plot所有box
- # for *xyxy, conf, cls in reversed(det0):
- # label = f'{int(cls)} {conf:.2f}'
- # plot_one_box(xyxy, img0, label=label, color=rainbows[int(cls)], line_thickness=2)
-
- # DMPR process
- det1 = DMPR_process(img0, DMPRmodel, device, args)
- det1 = det1.cpu().detach().numpy()
- #
- t_dmpr = time.time()
- print(f't_dmpr. ({t_dmpr - t_yolo:.3f}s)')
-
- # 绘制角点
- plot_points(img0, det1)
-
- # yolo joint DMPR
- cls = 0 #需要过滤的box类别
- joint_det, dilate_box = dmpr_yolo(det1, det0, img0.shape, cls, args.scale_ratio, args.border)
- #
- t_joint = time.time()
- print(f't_joint. ({t_joint - t_dmpr:.3f}s)')
-
- t_end = time.time()
- print(f'Done. ({t_end - t_start:.3f}s)')
- # 绘制膨胀box
- for *xyxy, flag in dilate_box:
- plot_one_box(xyxy, img0, color=rainbows[int(cls)], line_thickness=2)
- # #
- # # 绘制删除满足 在膨胀框内 && 角度差小于90度 的box
- for *xyxy, conf, cls, flag in reversed(joint_det):
- if flag == 0:
- # label = f'{int(cls)} {conf:.2f}'
- label = None
- plot_one_box(xyxy, img0, label=label, color=rainbows[int(cls)], line_thickness=2)
-
- # save
- mask = det2[..., np.newaxis].repeat(3, 2)
- img_seg = 0.3*mask + img0
- save_path = os.path.join(outpth, file)
- cv2.imwrite(save_path, img_seg)
-
-
-
- if __name__ == '__main__':
- main()
|