|
- """Universal network struture unit definition."""
- from torch import nn
-
-
- def define_squeeze_unit(basic_channel_size):
- """Define a 1x1 squeeze convolution with norm and activation."""
- conv = nn.Conv2d(2 * basic_channel_size, basic_channel_size, kernel_size=1,
- stride=1, padding=0, bias=False)
- norm = nn.BatchNorm2d(basic_channel_size)
- relu = nn.LeakyReLU(0.1)
- layers = [conv, norm, relu]
- return layers
-
-
- def define_expand_unit(basic_channel_size):
- """Define a 3x3 expand convolution with norm and activation."""
- conv = nn.Conv2d(basic_channel_size, 2 * basic_channel_size, kernel_size=3,
- stride=1, padding=1, bias=False)
- norm = nn.BatchNorm2d(2 * basic_channel_size)
- relu = nn.LeakyReLU(0.1)
- layers = [conv, norm, relu]
- return layers
-
-
- def define_halve_unit(basic_channel_size):
- """Define a 4x4 stride 2 expand convolution with norm and activation."""
- conv = nn.Conv2d(basic_channel_size, 2 * basic_channel_size, kernel_size=4,
- stride=2, padding=1, bias=False)
- norm = nn.BatchNorm2d(2 * basic_channel_size)
- relu = nn.LeakyReLU(0.1)
- layers = [conv, norm, relu]
- return layers
-
-
- def define_depthwise_expand_unit(basic_channel_size):
- """Define a 3x3 expand convolution with norm and activation."""
- conv1 = nn.Conv2d(basic_channel_size, 2 * basic_channel_size,
- kernel_size=1, stride=1, padding=0, bias=False)
- norm1 = nn.BatchNorm2d(2 * basic_channel_size)
- relu1 = nn.LeakyReLU(0.1)
- conv2 = nn.Conv2d(2 * basic_channel_size, 2 * basic_channel_size, kernel_size=3,
- stride=1, padding=1, bias=False, groups=2 * basic_channel_size)
- norm2 = nn.BatchNorm2d(2 * basic_channel_size)
- relu2 = nn.LeakyReLU(0.1)
- layers = [conv1, norm1, relu1, conv2, norm2, relu2]
- return layers
-
-
- def define_detector_block(basic_channel_size):
- """Define a unit composite of a squeeze and expand unit."""
- layers = []
- layers += define_squeeze_unit(basic_channel_size)
- layers += define_expand_unit(basic_channel_size)
- return layers
|