|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170 |
- <a href="https://apps.apple.com/app/id1452689527" target="_blank">
- <img src="https://user-images.githubusercontent.com/26833433/98699617-a1595a00-2377-11eb-8145-fc674eb9b1a7.jpg" width="1000"></a>
-  
-
- <a href="https://github.com/ultralytics/yolov5/actions"><img src="https://github.com/ultralytics/yolov5/workflows/CI%20CPU%20testing/badge.svg" alt="CI CPU testing"></a>
-
- This repository represents Ultralytics open-source research into future object detection methods, and incorporates lessons learned and best practices evolved over thousands of hours of training and evolution on anonymized client datasets. **All code and models are under active development, and are subject to modification or deletion without notice.** Use at your own risk.
-
- <p align="center"><img width="800" src="https://user-images.githubusercontent.com/26833433/114313216-f0a5e100-9af5-11eb-8445-c682b60da2e3.png"></p>
- <details>
- <summary>YOLOv5-P5 640 Figure (click to expand)</summary>
-
- <p align="center"><img width="800" src="https://user-images.githubusercontent.com/26833433/114313219-f1d70e00-9af5-11eb-9973-52b1f98d321a.png"></p>
- </details>
- <details>
- <summary>Figure Notes (click to expand)</summary>
-
- * GPU Speed measures end-to-end time per image averaged over 5000 COCO val2017 images using a V100 GPU with batch size 32, and includes image preprocessing, PyTorch FP16 inference, postprocessing and NMS.
- * EfficientDet data from [google/automl](https://github.com/google/automl) at batch size 8.
- * **Reproduce** by `python test.py --task study --data coco.yaml --iou 0.7 --weights yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt`
- </details>
-
- - **April 11, 2021**: [v5.0 release](https://github.com/ultralytics/yolov5/releases/tag/v5.0): YOLOv5-P6 1280 models, [AWS](https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart), [Supervise.ly](https://github.com/ultralytics/yolov5/issues/2518) and [YouTube](https://github.com/ultralytics/yolov5/pull/2752) integrations.
- - **January 5, 2021**: [v4.0 release](https://github.com/ultralytics/yolov5/releases/tag/v4.0): nn.SiLU() activations, [Weights & Biases](https://wandb.ai/site?utm_campaign=repo_yolo_readme) logging, [PyTorch Hub](https://pytorch.org/hub/ultralytics_yolov5/) integration.
- - **August 13, 2020**: [v3.0 release](https://github.com/ultralytics/yolov5/releases/tag/v3.0): nn.Hardswish() activations, data autodownload, native AMP.
- - **July 23, 2020**: [v2.0 release](https://github.com/ultralytics/yolov5/releases/tag/v2.0): improved model definition, training and mAP.
-
-
- ## Pretrained Checkpoints
-
- [assets]: https://github.com/ultralytics/yolov5/releases
-
- Model |size<br><sup>(pixels) |mAP<sup>val<br>0.5:0.95 |mAP<sup>test<br>0.5:0.95 |mAP<sup>val<br>0.5 |Speed<br><sup>V100 (ms) | |params<br><sup>(M) |FLOPS<br><sup>640 (B)
- --- |--- |--- |--- |--- |--- |---|--- |---
- [YOLOv5s][assets] |640 |36.7 |36.7 |55.4 |**2.0** | |7.3 |17.0
- [YOLOv5m][assets] |640 |44.5 |44.5 |63.3 |2.7 | |21.4 |51.3
- [YOLOv5l][assets] |640 |48.2 |48.2 |66.9 |3.8 | |47.0 |115.4
- [YOLOv5x][assets] |640 |**50.4** |**50.4** |**68.8** |6.1 | |87.7 |218.8
- | | | | | | || |
- [YOLOv5s6][assets] |1280 |43.3 |43.3 |61.9 |**4.3** | |12.7 |17.4
- [YOLOv5m6][assets] |1280 |50.5 |50.5 |68.7 |8.4 | |35.9 |52.4
- [YOLOv5l6][assets] |1280 |53.4 |53.4 |71.1 |12.3 | |77.2 |117.7
- [YOLOv5x6][assets] |1280 |**54.4** |**54.4** |**72.0** |22.4 | |141.8 |222.9
- | | | | | | || |
- [YOLOv5x6][assets] TTA |1280 |**55.0** |**55.0** |**72.0** |70.8 | |- |-
-
- <details>
- <summary>Table Notes (click to expand)</summary>
-
- * AP<sup>test</sup> denotes COCO [test-dev2017](http://cocodataset.org/#upload) server results, all other AP results denote val2017 accuracy.
- * AP values are for single-model single-scale unless otherwise noted. **Reproduce mAP** by `python test.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65`
- * Speed<sub>GPU</sub> averaged over 5000 COCO val2017 images using a GCP [n1-standard-16](https://cloud.google.com/compute/docs/machine-types#n1_standard_machine_types) V100 instance, and includes FP16 inference, postprocessing and NMS. **Reproduce speed** by `python test.py --data coco.yaml --img 640 --conf 0.25 --iou 0.45`
- * All checkpoints are trained to 300 epochs with default settings and hyperparameters (no autoaugmentation).
- * Test Time Augmentation ([TTA](https://github.com/ultralytics/yolov5/issues/303)) includes reflection and scale augmentation. **Reproduce TTA** by `python test.py --data coco.yaml --img 1536 --iou 0.7 --augment`
- </details>
-
-
- ## Requirements
-
- Python 3.8 or later with all [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) dependencies installed, including `torch>=1.7`. To install run:
- ```bash
- $ pip install -r requirements.txt
- ```
-
-
- ## Tutorials
-
- * [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data) 🚀 RECOMMENDED
- * [Tips for Best Training Results](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results) ☘️ RECOMMENDED
- * [Weights & Biases Logging](https://github.com/ultralytics/yolov5/issues/1289) 🌟 NEW
- * [Supervisely Ecosystem](https://github.com/ultralytics/yolov5/issues/2518) 🌟 NEW
- * [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475)
- * [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) ⭐ NEW
- * [ONNX and TorchScript Export](https://github.com/ultralytics/yolov5/issues/251)
- * [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303)
- * [Model Ensembling](https://github.com/ultralytics/yolov5/issues/318)
- * [Model Pruning/Sparsity](https://github.com/ultralytics/yolov5/issues/304)
- * [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607)
- * [Transfer Learning with Frozen Layers](https://github.com/ultralytics/yolov5/issues/1314) ⭐ NEW
- * [TensorRT Deployment](https://github.com/wang-xinyu/tensorrtx)
-
-
- ## Environments
-
- YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):
-
- - **Google Colab and Kaggle** notebooks with free GPU: <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
- - **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)
- - **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart)
- - **Docker Image**. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) <a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
-
-
- ## Inference
-
- `detect.py` runs inference on a variety of sources, downloading models automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`.
- ```bash
- $ python detect.py --source 0 # webcam
- file.jpg # image
- file.mp4 # video
- path/ # directory
- path/*.jpg # glob
- 'https://youtu.be/NUsoVlDFqZg' # YouTube video
- 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
- ```
-
- To run inference on example images in `data/images`:
- ```bash
- $ python detect.py --source data/images --weights yolov5s.pt --conf 0.25
-
- Namespace(agnostic_nms=False, augment=False, classes=None, conf_thres=0.25, device='', exist_ok=False, img_size=640, iou_thres=0.45, name='exp', project='runs/detect', save_conf=False, save_txt=False, source='data/images/', update=False, view_img=False, weights=['yolov5s.pt'])
- YOLOv5 v4.0-96-g83dc1b4 torch 1.7.0+cu101 CUDA:0 (Tesla V100-SXM2-16GB, 16160.5MB)
-
- Fusing layers...
- Model Summary: 224 layers, 7266973 parameters, 0 gradients, 17.0 GFLOPS
- image 1/2 /content/yolov5/data/images/bus.jpg: 640x480 4 persons, 1 bus, Done. (0.010s)
- image 2/2 /content/yolov5/data/images/zidane.jpg: 384x640 2 persons, 1 tie, Done. (0.011s)
- Results saved to runs/detect/exp2
- Done. (0.103s)
- ```
- <img src="https://user-images.githubusercontent.com/26833433/97107365-685a8d80-16c7-11eb-8c2e-83aac701d8b9.jpeg" width="500">
-
- ### PyTorch Hub
-
- To run **batched inference** with YOLOv5 and [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36):
- ```python
- import torch
-
- # Model
- model = torch.hub.load('ultralytics/yolov5', 'yolov5s')
-
- # Images
- dir = 'https://github.com/ultralytics/yolov5/raw/master/data/images/'
- imgs = [dir + f for f in ('zidane.jpg', 'bus.jpg')] # batch of images
-
- # Inference
- results = model(imgs)
- results.print() # or .show(), .save()
- ```
-
-
- ## Training
-
- Run commands below to reproduce results on [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh) dataset (dataset auto-downloads on first use). Training times for YOLOv5s/m/l/x are 2/4/6/8 days on a single V100 (multi-GPU times faster). Use the largest `--batch-size` your GPU allows (batch sizes shown for 16 GB devices).
- ```bash
- $ python train.py --data coco.yaml --cfg yolov5s.yaml --weights '' --batch-size 64
- yolov5m 40
- yolov5l 24
- yolov5x 16
- ```
- <img src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png" width="900">
-
-
- ## Citation
-
- [![DOI](https://zenodo.org/badge/264818686.svg)](https://zenodo.org/badge/latestdoi/264818686)
-
-
- ## About Us
-
- Ultralytics is a U.S.-based particle physics and AI startup with over 6 years of expertise supporting government, academic and business clients. We offer a wide range of vision AI services, spanning from simple expert advice up to delivery of fully customized, end-to-end production solutions, including:
- - **Cloud-based AI** systems operating on **hundreds of HD video streams in realtime.**
- - **Edge AI** integrated into custom iOS and Android apps for realtime **30 FPS video inference.**
- - **Custom data training**, hyperparameter evolution, and model exportation to any destination.
-
- For business inquiries and professional support requests please visit us at https://www.ultralytics.com.
-
-
- ## Contact
-
- **Issues should be raised directly in the repository.** For business inquiries or professional support requests please visit https://www.ultralytics.com or email Glenn Jocher at glenn.jocher@ultralytics.com.
|