Você não pode selecionar mais de 25 tópicos Os tópicos devem começar com uma letra ou um número, podem incluir traços ('-') e podem ter até 35 caracteres.

torch_utils.py 12KB

4 anos atrás
4 anos atrás
4 anos atrás
4 anos atrás
4 anos atrás
4 anos atrás
4 anos atrás
4 anos atrás
4 anos atrás
4 anos atrás
4 anos atrás
4 anos atrás
4 anos atrás
4 anos atrás
4 anos atrás
4 anos atrás
4 anos atrás
4 anos atrás
4 anos atrás
4 anos atrás
4 anos atrás
4 anos atrás
4 anos atrás
4 anos atrás
4 anos atrás
4 anos atrás
4 anos atrás
4 anos atrás
4 anos atrás
4 anos atrás
4 anos atrás
4 anos atrás
4 anos atrás
4 anos atrás
4 anos atrás
4 anos atrás
4 anos atrás
4 anos atrás
4 anos atrás
4 anos atrás
4 anos atrás
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294
  1. # PyTorch utils
  2. import logging
  3. import math
  4. import os
  5. import platform
  6. import subprocess
  7. import time
  8. from contextlib import contextmanager
  9. from copy import deepcopy
  10. from pathlib import Path
  11. import torch
  12. import torch.backends.cudnn as cudnn
  13. import torch.nn as nn
  14. import torch.nn.functional as F
  15. import torchvision
  16. try:
  17. import thop # for FLOPS computation
  18. except ImportError:
  19. thop = None
  20. logger = logging.getLogger(__name__)
  21. @contextmanager
  22. def torch_distributed_zero_first(local_rank: int):
  23. """
  24. Decorator to make all processes in distributed training wait for each local_master to do something.
  25. """
  26. if local_rank not in [-1, 0]:
  27. torch.distributed.barrier()
  28. yield
  29. if local_rank == 0:
  30. torch.distributed.barrier()
  31. def init_torch_seeds(seed=0):
  32. # Speed-reproducibility tradeoff https://pytorch.org/docs/stable/notes/randomness.html
  33. torch.manual_seed(seed)
  34. if seed == 0: # slower, more reproducible
  35. cudnn.benchmark, cudnn.deterministic = False, True
  36. else: # faster, less reproducible
  37. cudnn.benchmark, cudnn.deterministic = True, False
  38. def git_describe():
  39. # return human-readable git description, i.e. v5.0-5-g3e25f1e https://git-scm.com/docs/git-describe
  40. if Path('.git').exists():
  41. return subprocess.check_output('git describe --tags --long --always', shell=True).decode('utf-8')[:-1]
  42. else:
  43. return ''
  44. def select_device(device='', batch_size=None):
  45. # device = 'cpu' or '0' or '0,1,2,3'
  46. s = f'YOLOv5 🚀 {git_describe()} torch {torch.__version__} ' # string
  47. cpu = device.lower() == 'cpu'
  48. if cpu:
  49. os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # force torch.cuda.is_available() = False
  50. elif device: # non-cpu device requested
  51. os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable
  52. assert torch.cuda.is_available(), f'CUDA unavailable, invalid device {device} requested' # check availability
  53. cuda = not cpu and torch.cuda.is_available()
  54. if cuda:
  55. n = torch.cuda.device_count()
  56. if n > 1 and batch_size: # check that batch_size is compatible with device_count
  57. assert batch_size % n == 0, f'batch-size {batch_size} not multiple of GPU count {n}'
  58. space = ' ' * len(s)
  59. for i, d in enumerate(device.split(',') if device else range(n)):
  60. p = torch.cuda.get_device_properties(i)
  61. s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / 1024 ** 2}MB)\n" # bytes to MB
  62. else:
  63. s += 'CPU\n'
  64. logger.info(s.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else s) # emoji-safe
  65. return torch.device('cuda:0' if cuda else 'cpu')
  66. def time_synchronized():
  67. # pytorch-accurate time
  68. if torch.cuda.is_available():
  69. torch.cuda.synchronize()
  70. return time.time()
  71. def profile(x, ops, n=100, device=None):
  72. # profile a pytorch module or list of modules. Example usage:
  73. # x = torch.randn(16, 3, 640, 640) # input
  74. # m1 = lambda x: x * torch.sigmoid(x)
  75. # m2 = nn.SiLU()
  76. # profile(x, [m1, m2], n=100) # profile speed over 100 iterations
  77. device = device or torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
  78. x = x.to(device)
  79. x.requires_grad = True
  80. print(torch.__version__, device.type, torch.cuda.get_device_properties(0) if device.type == 'cuda' else '')
  81. print(f"\n{'Params':>12s}{'GFLOPS':>12s}{'forward (ms)':>16s}{'backward (ms)':>16s}{'input':>24s}{'output':>24s}")
  82. for m in ops if isinstance(ops, list) else [ops]:
  83. m = m.to(device) if hasattr(m, 'to') else m # device
  84. m = m.half() if hasattr(m, 'half') and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m # type
  85. dtf, dtb, t = 0., 0., [0., 0., 0.] # dt forward, backward
  86. try:
  87. flops = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 # GFLOPS
  88. except:
  89. flops = 0
  90. for _ in range(n):
  91. t[0] = time_synchronized()
  92. y = m(x)
  93. t[1] = time_synchronized()
  94. try:
  95. _ = y.sum().backward()
  96. t[2] = time_synchronized()
  97. except: # no backward method
  98. t[2] = float('nan')
  99. dtf += (t[1] - t[0]) * 1000 / n # ms per op forward
  100. dtb += (t[2] - t[1]) * 1000 / n # ms per op backward
  101. s_in = tuple(x.shape) if isinstance(x, torch.Tensor) else 'list'
  102. s_out = tuple(y.shape) if isinstance(y, torch.Tensor) else 'list'
  103. p = sum(list(x.numel() for x in m.parameters())) if isinstance(m, nn.Module) else 0 # parameters
  104. print(f'{p:12}{flops:12.4g}{dtf:16.4g}{dtb:16.4g}{str(s_in):>24s}{str(s_out):>24s}')
  105. def is_parallel(model):
  106. return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel)
  107. def intersect_dicts(da, db, exclude=()):
  108. # Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values
  109. return {k: v for k, v in da.items() if k in db and not any(x in k for x in exclude) and v.shape == db[k].shape}
  110. def initialize_weights(model):
  111. for m in model.modules():
  112. t = type(m)
  113. if t is nn.Conv2d:
  114. pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
  115. elif t is nn.BatchNorm2d:
  116. m.eps = 1e-3
  117. m.momentum = 0.03
  118. elif t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6]:
  119. m.inplace = True
  120. def find_modules(model, mclass=nn.Conv2d):
  121. # Finds layer indices matching module class 'mclass'
  122. return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)]
  123. def sparsity(model):
  124. # Return global model sparsity
  125. a, b = 0., 0.
  126. for p in model.parameters():
  127. a += p.numel()
  128. b += (p == 0).sum()
  129. return b / a
  130. def prune(model, amount=0.3):
  131. # Prune model to requested global sparsity
  132. import torch.nn.utils.prune as prune
  133. print('Pruning model... ', end='')
  134. for name, m in model.named_modules():
  135. if isinstance(m, nn.Conv2d):
  136. prune.l1_unstructured(m, name='weight', amount=amount) # prune
  137. prune.remove(m, 'weight') # make permanent
  138. print(' %.3g global sparsity' % sparsity(model))
  139. def fuse_conv_and_bn(conv, bn):
  140. # Fuse convolution and batchnorm layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/
  141. fusedconv = nn.Conv2d(conv.in_channels,
  142. conv.out_channels,
  143. kernel_size=conv.kernel_size,
  144. stride=conv.stride,
  145. padding=conv.padding,
  146. groups=conv.groups,
  147. bias=True).requires_grad_(False).to(conv.weight.device)
  148. # prepare filters
  149. w_conv = conv.weight.clone().view(conv.out_channels, -1)
  150. w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
  151. fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.size()))
  152. # prepare spatial bias
  153. b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias
  154. b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
  155. fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)
  156. return fusedconv
  157. def model_info(model, verbose=False, img_size=640):
  158. # Model information. img_size may be int or list, i.e. img_size=640 or img_size=[640, 320]
  159. n_p = sum(x.numel() for x in model.parameters()) # number parameters
  160. n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients
  161. if verbose:
  162. print('%5s %40s %9s %12s %20s %10s %10s' % ('layer', 'name', 'gradient', 'parameters', 'shape', 'mu', 'sigma'))
  163. for i, (name, p) in enumerate(model.named_parameters()):
  164. name = name.replace('module_list.', '')
  165. print('%5g %40s %9s %12g %20s %10.3g %10.3g' %
  166. (i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std()))
  167. try: # FLOPS
  168. from thop import profile
  169. stride = max(int(model.stride.max()), 32) if hasattr(model, 'stride') else 32
  170. img = torch.zeros((1, model.yaml.get('ch', 3), stride, stride), device=next(model.parameters()).device) # input
  171. flops = profile(deepcopy(model), inputs=(img,), verbose=False)[0] / 1E9 * 2 # stride GFLOPS
  172. img_size = img_size if isinstance(img_size, list) else [img_size, img_size] # expand if int/float
  173. fs = ', %.1f GFLOPS' % (flops * img_size[0] / stride * img_size[1] / stride) # 640x640 GFLOPS
  174. except (ImportError, Exception):
  175. fs = ''
  176. logger.info(f"Model Summary: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}")
  177. def load_classifier(name='resnet101', n=2):
  178. # Loads a pretrained model reshaped to n-class output
  179. model = torchvision.models.__dict__[name](pretrained=True)
  180. # ResNet model properties
  181. # input_size = [3, 224, 224]
  182. # input_space = 'RGB'
  183. # input_range = [0, 1]
  184. # mean = [0.485, 0.456, 0.406]
  185. # std = [0.229, 0.224, 0.225]
  186. # Reshape output to n classes
  187. filters = model.fc.weight.shape[1]
  188. model.fc.bias = nn.Parameter(torch.zeros(n), requires_grad=True)
  189. model.fc.weight = nn.Parameter(torch.zeros(n, filters), requires_grad=True)
  190. model.fc.out_features = n
  191. return model
  192. def scale_img(img, ratio=1.0, same_shape=False, gs=32): # img(16,3,256,416)
  193. # scales img(bs,3,y,x) by ratio constrained to gs-multiple
  194. if ratio == 1.0:
  195. return img
  196. else:
  197. h, w = img.shape[2:]
  198. s = (int(h * ratio), int(w * ratio)) # new size
  199. img = F.interpolate(img, size=s, mode='bilinear', align_corners=False) # resize
  200. if not same_shape: # pad/crop img
  201. h, w = [math.ceil(x * ratio / gs) * gs for x in (h, w)]
  202. return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean
  203. def copy_attr(a, b, include=(), exclude=()):
  204. # Copy attributes from b to a, options to only include [...] and to exclude [...]
  205. for k, v in b.__dict__.items():
  206. if (len(include) and k not in include) or k.startswith('_') or k in exclude:
  207. continue
  208. else:
  209. setattr(a, k, v)
  210. class ModelEMA:
  211. """ Model Exponential Moving Average from https://github.com/rwightman/pytorch-image-models
  212. Keep a moving average of everything in the model state_dict (parameters and buffers).
  213. This is intended to allow functionality like
  214. https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
  215. A smoothed version of the weights is necessary for some training schemes to perform well.
  216. This class is sensitive where it is initialized in the sequence of model init,
  217. GPU assignment and distributed training wrappers.
  218. """
  219. def __init__(self, model, decay=0.9999, updates=0):
  220. # Create EMA
  221. self.ema = deepcopy(model.module if is_parallel(model) else model).eval() # FP32 EMA
  222. # if next(model.parameters()).device.type != 'cpu':
  223. # self.ema.half() # FP16 EMA
  224. self.updates = updates # number of EMA updates
  225. self.decay = lambda x: decay * (1 - math.exp(-x / 2000)) # decay exponential ramp (to help early epochs)
  226. for p in self.ema.parameters():
  227. p.requires_grad_(False)
  228. def update(self, model):
  229. # Update EMA parameters
  230. with torch.no_grad():
  231. self.updates += 1
  232. d = self.decay(self.updates)
  233. msd = model.module.state_dict() if is_parallel(model) else model.state_dict() # model state_dict
  234. for k, v in self.ema.state_dict().items():
  235. if v.dtype.is_floating_point:
  236. v *= d
  237. v += (1. - d) * msd[k].detach()
  238. def update_attr(self, model, include=(), exclude=('process_group', 'reducer')):
  239. # Update EMA attributes
  240. copy_attr(self.ema, model, include, exclude)