Ви не можете вибрати більше 25 тем Теми мають розпочинатися з літери або цифри, можуть містити дефіси (-) і не повинні перевищувати 35 символів.

4 роки тому
4 роки тому
4 роки тому
4 роки тому
4 роки тому
4 роки тому
4 роки тому
4 роки тому
Improved W&B integration (#2125) * Init Commit * new wandb integration * Update * Use data_dict in test * Updates * Update: scope of log_img * Update: scope of log_img * Update * Update: Fix logging conditions * Add tqdm bar, support for .txt dataset format * Improve Result table Logger * Init Commit * new wandb integration * Update * Use data_dict in test * Updates * Update: scope of log_img * Update: scope of log_img * Update * Update: Fix logging conditions * Add tqdm bar, support for .txt dataset format * Improve Result table Logger * Add dataset creation in training script * Change scope: self.wandb_run * Add wandb-artifact:// natively you can now use --resume with wandb run links * Add suuport for logging dataset while training * Cleanup * Fix: Merge conflict * Fix: CI tests * Automatically use wandb config * Fix: Resume * Fix: CI * Enhance: Using val_table * More resume enhancement * FIX : CI * Add alias * Get useful opt config data * train.py cleanup * Cleanup train.py * more cleanup * Cleanup| CI fix * Reformat using PEP8 * FIX:CI * rebase * remove uneccesary changes * remove uneccesary changes * remove uneccesary changes * remove unecessary chage from test.py * FIX: resume from local checkpoint * FIX:resume * FIX:resume * Reformat * Performance improvement * Fix local resume * Fix local resume * FIX:CI * Fix: CI * Imporve image logging * (:(:Redo CI tests:):) * Remember epochs when resuming * Remember epochs when resuming * Update DDP location Potential fix for #2405 * PEP8 reformat * 0.25 confidence threshold * reset train.py plots syntax to previous * reset epochs completed syntax to previous * reset space to previous * remove brackets * reset comment to previous * Update: is_coco check, remove unused code * Remove redundant print statement * Remove wandb imports * remove dsviz logger from test.py * Remove redundant change from test.py * remove redundant changes from train.py * reformat and improvements * Fix typo * Add tqdm tqdm progress when scanning files, naming improvements Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
3 роки тому
4 роки тому
4 роки тому
4 роки тому
4 роки тому
4 роки тому
4 роки тому
4 роки тому
4 роки тому
Improved W&B integration (#2125) * Init Commit * new wandb integration * Update * Use data_dict in test * Updates * Update: scope of log_img * Update: scope of log_img * Update * Update: Fix logging conditions * Add tqdm bar, support for .txt dataset format * Improve Result table Logger * Init Commit * new wandb integration * Update * Use data_dict in test * Updates * Update: scope of log_img * Update: scope of log_img * Update * Update: Fix logging conditions * Add tqdm bar, support for .txt dataset format * Improve Result table Logger * Add dataset creation in training script * Change scope: self.wandb_run * Add wandb-artifact:// natively you can now use --resume with wandb run links * Add suuport for logging dataset while training * Cleanup * Fix: Merge conflict * Fix: CI tests * Automatically use wandb config * Fix: Resume * Fix: CI * Enhance: Using val_table * More resume enhancement * FIX : CI * Add alias * Get useful opt config data * train.py cleanup * Cleanup train.py * more cleanup * Cleanup| CI fix * Reformat using PEP8 * FIX:CI * rebase * remove uneccesary changes * remove uneccesary changes * remove uneccesary changes * remove unecessary chage from test.py * FIX: resume from local checkpoint * FIX:resume * FIX:resume * Reformat * Performance improvement * Fix local resume * Fix local resume * FIX:CI * Fix: CI * Imporve image logging * (:(:Redo CI tests:):) * Remember epochs when resuming * Remember epochs when resuming * Update DDP location Potential fix for #2405 * PEP8 reformat * 0.25 confidence threshold * reset train.py plots syntax to previous * reset epochs completed syntax to previous * reset space to previous * remove brackets * reset comment to previous * Update: is_coco check, remove unused code * Remove redundant print statement * Remove wandb imports * remove dsviz logger from test.py * Remove redundant change from test.py * remove redundant changes from train.py * reformat and improvements * Fix typo * Add tqdm tqdm progress when scanning files, naming improvements Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
3 роки тому
4 роки тому
Improved W&B integration (#2125) * Init Commit * new wandb integration * Update * Use data_dict in test * Updates * Update: scope of log_img * Update: scope of log_img * Update * Update: Fix logging conditions * Add tqdm bar, support for .txt dataset format * Improve Result table Logger * Init Commit * new wandb integration * Update * Use data_dict in test * Updates * Update: scope of log_img * Update: scope of log_img * Update * Update: Fix logging conditions * Add tqdm bar, support for .txt dataset format * Improve Result table Logger * Add dataset creation in training script * Change scope: self.wandb_run * Add wandb-artifact:// natively you can now use --resume with wandb run links * Add suuport for logging dataset while training * Cleanup * Fix: Merge conflict * Fix: CI tests * Automatically use wandb config * Fix: Resume * Fix: CI * Enhance: Using val_table * More resume enhancement * FIX : CI * Add alias * Get useful opt config data * train.py cleanup * Cleanup train.py * more cleanup * Cleanup| CI fix * Reformat using PEP8 * FIX:CI * rebase * remove uneccesary changes * remove uneccesary changes * remove uneccesary changes * remove unecessary chage from test.py * FIX: resume from local checkpoint * FIX:resume * FIX:resume * Reformat * Performance improvement * Fix local resume * Fix local resume * FIX:CI * Fix: CI * Imporve image logging * (:(:Redo CI tests:):) * Remember epochs when resuming * Remember epochs when resuming * Update DDP location Potential fix for #2405 * PEP8 reformat * 0.25 confidence threshold * reset train.py plots syntax to previous * reset epochs completed syntax to previous * reset space to previous * remove brackets * reset comment to previous * Update: is_coco check, remove unused code * Remove redundant print statement * Remove wandb imports * remove dsviz logger from test.py * Remove redundant change from test.py * remove redundant changes from train.py * reformat and improvements * Fix typo * Add tqdm tqdm progress when scanning files, naming improvements Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
3 роки тому
4 роки тому
4 роки тому
4 роки тому
4 роки тому
4 роки тому
4 роки тому
4 роки тому
4 роки тому
4 роки тому
4 роки тому
4 роки тому
4 роки тому
4 роки тому
4 роки тому
4 роки тому
4 роки тому
4 роки тому
4 роки тому
4 роки тому
4 роки тому
Improved W&B integration (#2125) * Init Commit * new wandb integration * Update * Use data_dict in test * Updates * Update: scope of log_img * Update: scope of log_img * Update * Update: Fix logging conditions * Add tqdm bar, support for .txt dataset format * Improve Result table Logger * Init Commit * new wandb integration * Update * Use data_dict in test * Updates * Update: scope of log_img * Update: scope of log_img * Update * Update: Fix logging conditions * Add tqdm bar, support for .txt dataset format * Improve Result table Logger * Add dataset creation in training script * Change scope: self.wandb_run * Add wandb-artifact:// natively you can now use --resume with wandb run links * Add suuport for logging dataset while training * Cleanup * Fix: Merge conflict * Fix: CI tests * Automatically use wandb config * Fix: Resume * Fix: CI * Enhance: Using val_table * More resume enhancement * FIX : CI * Add alias * Get useful opt config data * train.py cleanup * Cleanup train.py * more cleanup * Cleanup| CI fix * Reformat using PEP8 * FIX:CI * rebase * remove uneccesary changes * remove uneccesary changes * remove uneccesary changes * remove unecessary chage from test.py * FIX: resume from local checkpoint * FIX:resume * FIX:resume * Reformat * Performance improvement * Fix local resume * Fix local resume * FIX:CI * Fix: CI * Imporve image logging * (:(:Redo CI tests:):) * Remember epochs when resuming * Remember epochs when resuming * Update DDP location Potential fix for #2405 * PEP8 reformat * 0.25 confidence threshold * reset train.py plots syntax to previous * reset epochs completed syntax to previous * reset space to previous * remove brackets * reset comment to previous * Update: is_coco check, remove unused code * Remove redundant print statement * Remove wandb imports * remove dsviz logger from test.py * Remove redundant change from test.py * remove redundant changes from train.py * reformat and improvements * Fix typo * Add tqdm tqdm progress when scanning files, naming improvements Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
3 роки тому
4 роки тому
4 роки тому
4 роки тому
4 роки тому
4 роки тому
4 роки тому
4 роки тому
4 роки тому
4 роки тому
4 роки тому
4 роки тому
4 роки тому
4 роки тому
4 роки тому
Improved W&B integration (#2125) * Init Commit * new wandb integration * Update * Use data_dict in test * Updates * Update: scope of log_img * Update: scope of log_img * Update * Update: Fix logging conditions * Add tqdm bar, support for .txt dataset format * Improve Result table Logger * Init Commit * new wandb integration * Update * Use data_dict in test * Updates * Update: scope of log_img * Update: scope of log_img * Update * Update: Fix logging conditions * Add tqdm bar, support for .txt dataset format * Improve Result table Logger * Add dataset creation in training script * Change scope: self.wandb_run * Add wandb-artifact:// natively you can now use --resume with wandb run links * Add suuport for logging dataset while training * Cleanup * Fix: Merge conflict * Fix: CI tests * Automatically use wandb config * Fix: Resume * Fix: CI * Enhance: Using val_table * More resume enhancement * FIX : CI * Add alias * Get useful opt config data * train.py cleanup * Cleanup train.py * more cleanup * Cleanup| CI fix * Reformat using PEP8 * FIX:CI * rebase * remove uneccesary changes * remove uneccesary changes * remove uneccesary changes * remove unecessary chage from test.py * FIX: resume from local checkpoint * FIX:resume * FIX:resume * Reformat * Performance improvement * Fix local resume * Fix local resume * FIX:CI * Fix: CI * Imporve image logging * (:(:Redo CI tests:):) * Remember epochs when resuming * Remember epochs when resuming * Update DDP location Potential fix for #2405 * PEP8 reformat * 0.25 confidence threshold * reset train.py plots syntax to previous * reset epochs completed syntax to previous * reset space to previous * remove brackets * reset comment to previous * Update: is_coco check, remove unused code * Remove redundant print statement * Remove wandb imports * remove dsviz logger from test.py * Remove redundant change from test.py * remove redundant changes from train.py * reformat and improvements * Fix typo * Add tqdm tqdm progress when scanning files, naming improvements Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
3 роки тому
4 роки тому
4 роки тому
4 роки тому
4 роки тому
4 роки тому
4 роки тому
4 роки тому
4 роки тому
4 роки тому
4 роки тому
4 роки тому
4 роки тому
4 роки тому
4 роки тому
4 роки тому
4 роки тому
4 роки тому
4 роки тому
4 роки тому
4 роки тому
3 роки тому
4 роки тому
4 роки тому
4 роки тому
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344
  1. import argparse
  2. import json
  3. import os
  4. from pathlib import Path
  5. from threading import Thread
  6. import numpy as np
  7. import torch
  8. import yaml
  9. from tqdm import tqdm
  10. from models.experimental import attempt_load
  11. from utils.datasets import create_dataloader
  12. from utils.general import coco80_to_coco91_class, check_dataset, check_file, check_img_size, check_requirements, \
  13. box_iou, non_max_suppression, scale_coords, xyxy2xywh, xywh2xyxy, set_logging, increment_path, colorstr
  14. from utils.metrics import ap_per_class, ConfusionMatrix
  15. from utils.plots import plot_images, output_to_target, plot_study_txt
  16. from utils.torch_utils import select_device, time_synchronized
  17. def test(data,
  18. weights=None,
  19. batch_size=32,
  20. imgsz=640,
  21. conf_thres=0.001,
  22. iou_thres=0.6, # for NMS
  23. save_json=False,
  24. single_cls=False,
  25. augment=False,
  26. verbose=False,
  27. model=None,
  28. dataloader=None,
  29. save_dir=Path(''), # for saving images
  30. save_txt=False, # for auto-labelling
  31. save_hybrid=False, # for hybrid auto-labelling
  32. save_conf=False, # save auto-label confidences
  33. plots=True,
  34. wandb_logger=None,
  35. compute_loss=None,
  36. is_coco=False):
  37. # Initialize/load model and set device
  38. training = model is not None
  39. if training: # called by train.py
  40. device = next(model.parameters()).device # get model device
  41. else: # called directly
  42. set_logging()
  43. device = select_device(opt.device, batch_size=batch_size)
  44. # Directories
  45. save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run
  46. (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
  47. # Load model
  48. model = attempt_load(weights, map_location=device) # load FP32 model
  49. gs = max(int(model.stride.max()), 32) # grid size (max stride)
  50. imgsz = check_img_size(imgsz, s=gs) # check img_size
  51. # Multi-GPU disabled, incompatible with .half() https://github.com/ultralytics/yolov5/issues/99
  52. # if device.type != 'cpu' and torch.cuda.device_count() > 1:
  53. # model = nn.DataParallel(model)
  54. # Half
  55. half = device.type != 'cpu' # half precision only supported on CUDA
  56. if half:
  57. model.half()
  58. # Configure
  59. model.eval()
  60. if isinstance(data, str):
  61. is_coco = data.endswith('coco.yaml')
  62. with open(data) as f:
  63. data = yaml.load(f, Loader=yaml.SafeLoader)
  64. check_dataset(data) # check
  65. nc = 1 if single_cls else int(data['nc']) # number of classes
  66. iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for mAP@0.5:0.95
  67. niou = iouv.numel()
  68. # Logging
  69. log_imgs = 0
  70. if wandb_logger and wandb_logger.wandb:
  71. log_imgs = min(wandb_logger.log_imgs, 100)
  72. # Dataloader
  73. if not training:
  74. if device.type != 'cpu':
  75. model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
  76. task = opt.task if opt.task in ('train', 'val', 'test') else 'val' # path to train/val/test images
  77. dataloader = create_dataloader(data[task], imgsz, batch_size, gs, opt, pad=0.5, rect=True,
  78. prefix=colorstr(f'{task}: '))[0]
  79. seen = 0
  80. confusion_matrix = ConfusionMatrix(nc=nc)
  81. names = {k: v for k, v in enumerate(model.names if hasattr(model, 'names') else model.module.names)}
  82. coco91class = coco80_to_coco91_class()
  83. s = ('%20s' + '%12s' * 6) % ('Class', 'Images', 'Labels', 'P', 'R', 'mAP@.5', 'mAP@.5:.95')
  84. p, r, f1, mp, mr, map50, map, t0, t1 = 0., 0., 0., 0., 0., 0., 0., 0., 0.
  85. loss = torch.zeros(3, device=device)
  86. jdict, stats, ap, ap_class, wandb_images = [], [], [], [], []
  87. for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)):
  88. img = img.to(device, non_blocking=True)
  89. img = img.half() if half else img.float() # uint8 to fp16/32
  90. img /= 255.0 # 0 - 255 to 0.0 - 1.0
  91. targets = targets.to(device)
  92. nb, _, height, width = img.shape # batch size, channels, height, width
  93. with torch.no_grad():
  94. # Run model
  95. t = time_synchronized()
  96. out, train_out = model(img, augment=augment) # inference and training outputs
  97. t0 += time_synchronized() - t
  98. # Compute loss
  99. if compute_loss:
  100. loss += compute_loss([x.float() for x in train_out], targets)[1][:3] # box, obj, cls
  101. # Run NMS
  102. targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(device) # to pixels
  103. lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling
  104. t = time_synchronized()
  105. out = non_max_suppression(out, conf_thres=conf_thres, iou_thres=iou_thres, labels=lb, multi_label=True)
  106. t1 += time_synchronized() - t
  107. # Statistics per image
  108. for si, pred in enumerate(out):
  109. labels = targets[targets[:, 0] == si, 1:]
  110. nl = len(labels)
  111. tcls = labels[:, 0].tolist() if nl else [] # target class
  112. path = Path(paths[si])
  113. seen += 1
  114. if len(pred) == 0:
  115. if nl:
  116. stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls))
  117. continue
  118. # Predictions
  119. predn = pred.clone()
  120. scale_coords(img[si].shape[1:], predn[:, :4], shapes[si][0], shapes[si][1]) # native-space pred
  121. # Append to text file
  122. if save_txt:
  123. gn = torch.tensor(shapes[si][0])[[1, 0, 1, 0]] # normalization gain whwh
  124. for *xyxy, conf, cls in predn.tolist():
  125. xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
  126. line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
  127. with open(save_dir / 'labels' / (path.stem + '.txt'), 'a') as f:
  128. f.write(('%g ' * len(line)).rstrip() % line + '\n')
  129. # W&B logging - Media Panel Plots
  130. if len(wandb_images) < log_imgs and wandb_logger.current_epoch > 0: # Check for test operation
  131. if wandb_logger.current_epoch % wandb_logger.bbox_interval == 0:
  132. box_data = [{"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]},
  133. "class_id": int(cls),
  134. "box_caption": "%s %.3f" % (names[cls], conf),
  135. "scores": {"class_score": conf},
  136. "domain": "pixel"} for *xyxy, conf, cls in pred.tolist()]
  137. boxes = {"predictions": {"box_data": box_data, "class_labels": names}} # inference-space
  138. wandb_images.append(wandb_logger.wandb.Image(img[si], boxes=boxes, caption=path.name))
  139. wandb_logger.log_training_progress(predn, path, names) # logs dsviz tables
  140. # Append to pycocotools JSON dictionary
  141. if save_json:
  142. # [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
  143. image_id = int(path.stem) if path.stem.isnumeric() else path.stem
  144. box = xyxy2xywh(predn[:, :4]) # xywh
  145. box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
  146. for p, b in zip(pred.tolist(), box.tolist()):
  147. jdict.append({'image_id': image_id,
  148. 'category_id': coco91class[int(p[5])] if is_coco else int(p[5]),
  149. 'bbox': [round(x, 3) for x in b],
  150. 'score': round(p[4], 5)})
  151. # Assign all predictions as incorrect
  152. correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool, device=device)
  153. if nl:
  154. detected = [] # target indices
  155. tcls_tensor = labels[:, 0]
  156. # target boxes
  157. tbox = xywh2xyxy(labels[:, 1:5])
  158. scale_coords(img[si].shape[1:], tbox, shapes[si][0], shapes[si][1]) # native-space labels
  159. if plots:
  160. confusion_matrix.process_batch(predn, torch.cat((labels[:, 0:1], tbox), 1))
  161. # Per target class
  162. for cls in torch.unique(tcls_tensor):
  163. ti = (cls == tcls_tensor).nonzero(as_tuple=False).view(-1) # prediction indices
  164. pi = (cls == pred[:, 5]).nonzero(as_tuple=False).view(-1) # target indices
  165. # Search for detections
  166. if pi.shape[0]:
  167. # Prediction to target ious
  168. ious, i = box_iou(predn[pi, :4], tbox[ti]).max(1) # best ious, indices
  169. # Append detections
  170. detected_set = set()
  171. for j in (ious > iouv[0]).nonzero(as_tuple=False):
  172. d = ti[i[j]] # detected target
  173. if d.item() not in detected_set:
  174. detected_set.add(d.item())
  175. detected.append(d)
  176. correct[pi[j]] = ious[j] > iouv # iou_thres is 1xn
  177. if len(detected) == nl: # all targets already located in image
  178. break
  179. # Append statistics (correct, conf, pcls, tcls)
  180. stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))
  181. # Plot images
  182. if plots and batch_i < 3:
  183. f = save_dir / f'test_batch{batch_i}_labels.jpg' # labels
  184. Thread(target=plot_images, args=(img, targets, paths, f, names), daemon=True).start()
  185. f = save_dir / f'test_batch{batch_i}_pred.jpg' # predictions
  186. Thread(target=plot_images, args=(img, output_to_target(out), paths, f, names), daemon=True).start()
  187. # Compute statistics
  188. stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy
  189. if len(stats) and stats[0].any():
  190. p, r, ap, f1, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names)
  191. ap50, ap = ap[:, 0], ap.mean(1) # AP@0.5, AP@0.5:0.95
  192. mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
  193. nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class
  194. else:
  195. nt = torch.zeros(1)
  196. # Print results
  197. pf = '%20s' + '%12i' * 2 + '%12.3g' * 4 # print format
  198. print(pf % ('all', seen, nt.sum(), mp, mr, map50, map))
  199. # Print results per class
  200. if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
  201. for i, c in enumerate(ap_class):
  202. print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
  203. # Print speeds
  204. t = tuple(x / seen * 1E3 for x in (t0, t1, t0 + t1)) + (imgsz, imgsz, batch_size) # tuple
  205. if not training:
  206. print('Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g' % t)
  207. # Plots
  208. if plots:
  209. confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
  210. if wandb_logger and wandb_logger.wandb:
  211. val_batches = [wandb_logger.wandb.Image(str(f), caption=f.name) for f in sorted(save_dir.glob('test*.jpg'))]
  212. wandb_logger.log({"Validation": val_batches})
  213. if wandb_images:
  214. wandb_logger.log({"Bounding Box Debugger/Images": wandb_images})
  215. # Save JSON
  216. if save_json and len(jdict):
  217. w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights
  218. anno_json = '../coco/annotations/instances_val2017.json' # annotations json
  219. pred_json = str(save_dir / f"{w}_predictions.json") # predictions json
  220. print('\nEvaluating pycocotools mAP... saving %s...' % pred_json)
  221. with open(pred_json, 'w') as f:
  222. json.dump(jdict, f)
  223. try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
  224. from pycocotools.coco import COCO
  225. from pycocotools.cocoeval import COCOeval
  226. anno = COCO(anno_json) # init annotations api
  227. pred = anno.loadRes(pred_json) # init predictions api
  228. eval = COCOeval(anno, pred, 'bbox')
  229. if is_coco:
  230. eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.img_files] # image IDs to evaluate
  231. eval.evaluate()
  232. eval.accumulate()
  233. eval.summarize()
  234. map, map50 = eval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5)
  235. except Exception as e:
  236. print(f'pycocotools unable to run: {e}')
  237. # Return results
  238. model.float() # for training
  239. if not training:
  240. s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
  241. print(f"Results saved to {save_dir}{s}")
  242. maps = np.zeros(nc) + map
  243. for i, c in enumerate(ap_class):
  244. maps[c] = ap[i]
  245. return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
  246. if __name__ == '__main__':
  247. parser = argparse.ArgumentParser(prog='test.py')
  248. parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)')
  249. parser.add_argument('--data', type=str, default='data/coco128.yaml', help='*.data path')
  250. parser.add_argument('--batch-size', type=int, default=32, help='size of each image batch')
  251. parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
  252. parser.add_argument('--conf-thres', type=float, default=0.001, help='object confidence threshold')
  253. parser.add_argument('--iou-thres', type=float, default=0.6, help='IOU threshold for NMS')
  254. parser.add_argument('--task', default='val', help='train, val, test, speed or study')
  255. parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
  256. parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
  257. parser.add_argument('--augment', action='store_true', help='augmented inference')
  258. parser.add_argument('--verbose', action='store_true', help='report mAP by class')
  259. parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
  260. parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt')
  261. parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
  262. parser.add_argument('--save-json', action='store_true', help='save a cocoapi-compatible JSON results file')
  263. parser.add_argument('--project', default='runs/test', help='save to project/name')
  264. parser.add_argument('--name', default='exp', help='save to project/name')
  265. parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
  266. opt = parser.parse_args()
  267. opt.save_json |= opt.data.endswith('coco.yaml')
  268. opt.data = check_file(opt.data) # check file
  269. print(opt)
  270. check_requirements()
  271. if opt.task in ('train', 'val', 'test'): # run normally
  272. test(opt.data,
  273. opt.weights,
  274. opt.batch_size,
  275. opt.img_size,
  276. opt.conf_thres,
  277. opt.iou_thres,
  278. opt.save_json,
  279. opt.single_cls,
  280. opt.augment,
  281. opt.verbose,
  282. save_txt=opt.save_txt | opt.save_hybrid,
  283. save_hybrid=opt.save_hybrid,
  284. save_conf=opt.save_conf,
  285. )
  286. elif opt.task == 'speed': # speed benchmarks
  287. for w in opt.weights:
  288. test(opt.data, w, opt.batch_size, opt.img_size, 0.25, 0.45, save_json=False, plots=False)
  289. elif opt.task == 'study': # run over a range of settings and save/plot
  290. # python test.py --task study --data coco.yaml --iou 0.7 --weights yolov5s.pt yolov5m.pt yolov5l.pt yolov5x.pt
  291. x = list(range(256, 1536 + 128, 128)) # x axis (image sizes)
  292. for w in opt.weights:
  293. f = f'study_{Path(opt.data).stem}_{Path(w).stem}.txt' # filename to save to
  294. y = [] # y axis
  295. for i in x: # img-size
  296. print(f'\nRunning {f} point {i}...')
  297. r, _, t = test(opt.data, w, opt.batch_size, i, opt.conf_thres, opt.iou_thres, opt.save_json,
  298. plots=False)
  299. y.append(r + t) # results and times
  300. np.savetxt(f, y, fmt='%10.4g') # save
  301. os.system('zip -r study.zip study_*.txt')
  302. plot_study_txt(x=x) # plot