Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.

coco.yaml 1.7KB

il y a 4 ans
il y a 4 ans
il y a 4 ans
il y a 4 ans
il y a 4 ans
il y a 4 ans
1234567891011121314151617181920212223242526272829303132333435
  1. # COCO 2017 dataset http://cocodataset.org
  2. # Train command: python train.py --data coco.yaml
  3. # Default dataset location is next to /yolov5:
  4. # /parent_folder
  5. # /coco
  6. # /yolov5
  7. # download command/URL (optional)
  8. download: bash data/scripts/get_coco.sh
  9. # train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]
  10. train: ../coco/train2017.txt # 118287 images
  11. val: ../coco/val2017.txt # 5000 images
  12. test: ../coco/test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
  13. # number of classes
  14. nc: 80
  15. # class names
  16. names: ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
  17. 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
  18. 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
  19. 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
  20. 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
  21. 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
  22. 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
  23. 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
  24. 'hair drier', 'toothbrush']
  25. # Print classes
  26. # with open('data/coco.yaml') as f:
  27. # d = yaml.load(f, Loader=yaml.FullLoader) # dict
  28. # for i, x in enumerate(d['names']):
  29. # print(i, x)