- # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
- """
- Common modules
- """
-
- import json
- import math
- import platform
- import warnings
- from collections import OrderedDict, namedtuple
- from copy import copy
- from pathlib import Path
-
- import cv2
- import numpy as np
- import pandas as pd
- import requests
- import torch
- import torch.nn as nn
- import yaml
- from PIL import Image
- from torch.cuda import amp
-
- from utils.datasets import exif_transpose, letterbox
- from utils.general import (LOGGER, check_requirements, check_suffix, check_version, colorstr, increment_path,
- make_divisible, non_max_suppression, scale_coords, xywh2xyxy, xyxy2xywh)
- from utils.plots import Annotator, colors, save_one_box
- from utils.torch_utils import copy_attr, time_sync
-
-
- def autopad(k, p=None): # kernel, padding
- # Pad to 'same'
- if p is None:
- p = k // 2 if isinstance(k, int) else (x // 2 for x in k) # auto-pad
- return p
-
-
- class Conv(nn.Module):
- # Standard convolution
- def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
- super().__init__()
- self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
- self.bn = nn.BatchNorm2d(c2)
- self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
-
- def forward(self, x):
- return self.act(self.bn(self.conv(x)))
-
- def forward_fuse(self, x):
- return self.act(self.conv(x))
-
-
- class DWConv(Conv):
- # Depth-wise convolution class
- def __init__(self, c1, c2, k=1, s=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
- super().__init__(c1, c2, k, s, g=math.gcd(c1, c2), act=act)
-
-
- class TransformerLayer(nn.Module):
- # Transformer layer https://arxiv.org/abs/2010.11929 (LayerNorm layers removed for better performance)
- def __init__(self, c, num_heads):
- super().__init__()
- self.q = nn.Linear(c, c, bias=False)
- self.k = nn.Linear(c, c, bias=False)
- self.v = nn.Linear(c, c, bias=False)
- self.ma = nn.MultiheadAttention(embed_dim=c, num_heads=num_heads)
- self.fc1 = nn.Linear(c, c, bias=False)
- self.fc2 = nn.Linear(c, c, bias=False)
-
- def forward(self, x):
- x = self.ma(self.q(x), self.k(x), self.v(x))[0] + x
- x = self.fc2(self.fc1(x)) + x
- return x
-
-
- class TransformerBlock(nn.Module):
- # Vision Transformer https://arxiv.org/abs/2010.11929
- def __init__(self, c1, c2, num_heads, num_layers):
- super().__init__()
- self.conv = None
- if c1 != c2:
- self.conv = Conv(c1, c2)
- self.linear = nn.Linear(c2, c2) # learnable position embedding
- self.tr = nn.Sequential(*(TransformerLayer(c2, num_heads) for _ in range(num_layers)))
- self.c2 = c2
-
- def forward(self, x):
- if self.conv is not None:
- x = self.conv(x)
- b, _, w, h = x.shape
- p = x.flatten(2).permute(2, 0, 1)
- return self.tr(p + self.linear(p)).permute(1, 2, 0).reshape(b, self.c2, w, h)
-
-
- class Bottleneck(nn.Module):
- # Standard bottleneck
- def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
- super().__init__()
- c_ = int(c2 * e) # hidden channels
- self.cv1 = Conv(c1, c_, 1, 1)
- self.cv2 = Conv(c_, c2, 3, 1, g=g)
- self.add = shortcut and c1 == c2
-
- def forward(self, x):
- return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
-
-
- class BottleneckCSP(nn.Module):
- # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
- super().__init__()
- c_ = int(c2 * e) # hidden channels
- self.cv1 = Conv(c1, c_, 1, 1)
- self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
- self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
- self.cv4 = Conv(2 * c_, c2, 1, 1)
- self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3)
- self.act = nn.SiLU()
- self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
-
- def forward(self, x):
- y1 = self.cv3(self.m(self.cv1(x)))
- y2 = self.cv2(x)
- return self.cv4(self.act(self.bn(torch.cat((y1, y2), 1))))
-
-
- class C3(nn.Module):
- # CSP Bottleneck with 3 convolutions
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
- super().__init__()
- c_ = int(c2 * e) # hidden channels
- self.cv1 = Conv(c1, c_, 1, 1)
- self.cv2 = Conv(c1, c_, 1, 1)
- self.cv3 = Conv(2 * c_, c2, 1) # optional act=FReLU(c2)
- self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
- # self.m = nn.Sequential(*(CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)))
-
- def forward(self, x):
- return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))
-
-
- class C3TR(C3):
- # C3 module with TransformerBlock()
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
- super().__init__(c1, c2, n, shortcut, g, e)
- c_ = int(c2 * e)
- self.m = TransformerBlock(c_, c_, 4, n)
-
-
- class C3SPP(C3):
- # C3 module with SPP()
- def __init__(self, c1, c2, k=(5, 9, 13), n=1, shortcut=True, g=1, e=0.5):
- super().__init__(c1, c2, n, shortcut, g, e)
- c_ = int(c2 * e)
- self.m = SPP(c_, c_, k)
-
-
- class C3Ghost(C3):
- # C3 module with GhostBottleneck()
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
- super().__init__(c1, c2, n, shortcut, g, e)
- c_ = int(c2 * e) # hidden channels
- self.m = nn.Sequential(*(GhostBottleneck(c_, c_) for _ in range(n)))
-
-
- class SPP(nn.Module):
- # Spatial Pyramid Pooling (SPP) layer https://arxiv.org/abs/1406.4729
- def __init__(self, c1, c2, k=(5, 9, 13)):
- super().__init__()
- c_ = c1 // 2 # hidden channels
- self.cv1 = Conv(c1, c_, 1, 1)
- self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
- self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
-
- def forward(self, x):
- x = self.cv1(x)
- with warnings.catch_warnings():
- warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning
- return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
-
-
- class SPPF(nn.Module):
- # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher
- def __init__(self, c1, c2, k=5): # equivalent to SPP(k=(5, 9, 13))
- super().__init__()
- c_ = c1 // 2 # hidden channels
- self.cv1 = Conv(c1, c_, 1, 1)
- self.cv2 = Conv(c_ * 4, c2, 1, 1)
- self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
-
- def forward(self, x):
- x = self.cv1(x)
- with warnings.catch_warnings():
- warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning
- y1 = self.m(x)
- y2 = self.m(y1)
- return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1))
-
-
- class Focus(nn.Module):
- # Focus wh information into c-space
- def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
- super().__init__()
- self.conv = Conv(c1 * 4, c2, k, s, p, g, act)
- # self.contract = Contract(gain=2)
-
- def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2)
- return self.conv(torch.cat((x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]), 1))
- # return self.conv(self.contract(x))
-
-
- class GhostConv(nn.Module):
- # Ghost Convolution https://github.com/huawei-noah/ghostnet
- def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups
- super().__init__()
- c_ = c2 // 2 # hidden channels
- self.cv1 = Conv(c1, c_, k, s, None, g, act)
- self.cv2 = Conv(c_, c_, 5, 1, None, c_, act)
-
- def forward(self, x):
- y = self.cv1(x)
- return torch.cat((y, self.cv2(y)), 1)
-
-
- class GhostBottleneck(nn.Module):
- # Ghost Bottleneck https://github.com/huawei-noah/ghostnet
- def __init__(self, c1, c2, k=3, s=1): # ch_in, ch_out, kernel, stride
- super().__init__()
- c_ = c2 // 2
- self.conv = nn.Sequential(GhostConv(c1, c_, 1, 1), # pw
- DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw
- GhostConv(c_, c2, 1, 1, act=False)) # pw-linear
- self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False),
- Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity()
-
- def forward(self, x):
- return self.conv(x) + self.shortcut(x)
-
-
- class Contract(nn.Module):
- # Contract width-height into channels, i.e. x(1,64,80,80) to x(1,256,40,40)
- def __init__(self, gain=2):
- super().__init__()
- self.gain = gain
-
- def forward(self, x):
- b, c, h, w = x.size() # assert (h / s == 0) and (W / s == 0), 'Indivisible gain'
- s = self.gain
- x = x.view(b, c, h // s, s, w // s, s) # x(1,64,40,2,40,2)
- x = x.permute(0, 3, 5, 1, 2, 4).contiguous() # x(1,2,2,64,40,40)
- return x.view(b, c * s * s, h // s, w // s) # x(1,256,40,40)
-
-
- class Expand(nn.Module):
- # Expand channels into width-height, i.e. x(1,64,80,80) to x(1,16,160,160)
- def __init__(self, gain=2):
- super().__init__()
- self.gain = gain
-
- def forward(self, x):
- b, c, h, w = x.size() # assert C / s ** 2 == 0, 'Indivisible gain'
- s = self.gain
- x = x.view(b, s, s, c // s ** 2, h, w) # x(1,2,2,16,80,80)
- x = x.permute(0, 3, 4, 1, 5, 2).contiguous() # x(1,16,80,2,80,2)
- return x.view(b, c // s ** 2, h * s, w * s) # x(1,16,160,160)
-
-
- class Concat(nn.Module):
- # Concatenate a list of tensors along dimension
- def __init__(self, dimension=1):
- super().__init__()
- self.d = dimension
-
- def forward(self, x):
- return torch.cat(x, self.d)
-
-
- class DetectMultiBackend(nn.Module):
- # YOLOv5 MultiBackend class for python inference on various backends
- def __init__(self, weights='yolov5s.pt', device=torch.device('cpu'), dnn=False, data=None, fp16=False):
- # Usage:
- # PyTorch: weights = *.pt
- # TorchScript: *.torchscript
- # ONNX Runtime: *.onnx
- # ONNX OpenCV DNN: *.onnx with --dnn
- # OpenVINO: *.xml
- # CoreML: *.mlmodel
- # TensorRT: *.engine
- # TensorFlow SavedModel: *_saved_model
- # TensorFlow GraphDef: *.pb
- # TensorFlow Lite: *.tflite
- # TensorFlow Edge TPU: *_edgetpu.tflite
- from models.experimental import attempt_download, attempt_load # scoped to avoid circular import
-
- super().__init__()
- w = str(weights[0] if isinstance(weights, list) else weights)
- pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs = self.model_type(w) # get backend
- stride, names = 64, [f'class{i}' for i in range(1000)] # assign defaults
- w = attempt_download(w) # download if not local
- fp16 &= (pt or jit or onnx or engine) and device.type != 'cpu' # FP16
- if data: # data.yaml path (optional)
- with open(data, errors='ignore') as f:
- names = yaml.safe_load(f)['names'] # class names
-
- if pt: # PyTorch
- model = attempt_load(weights if isinstance(weights, list) else w, map_location=device)
- stride = max(int(model.stride.max()), 32) # model stride
- names = model.module.names if hasattr(model, 'module') else model.names # get class names
- model.half() if fp16 else model.float()
- self.model = model # explicitly assign for to(), cpu(), cuda(), half()
- elif jit: # TorchScript
- LOGGER.info(f'Loading {w} for TorchScript inference...')
- extra_files = {'config.txt': ''} # model metadata
- model = torch.jit.load(w, _extra_files=extra_files)
- model.half() if fp16 else model.float()
- if extra_files['config.txt']:
- d = json.loads(extra_files['config.txt']) # extra_files dict
- stride, names = int(d['stride']), d['names']
- elif dnn: # ONNX OpenCV DNN
- LOGGER.info(f'Loading {w} for ONNX OpenCV DNN inference...')
- check_requirements(('opencv-python>=4.5.4',))
- net = cv2.dnn.readNetFromONNX(w)
- elif onnx: # ONNX Runtime
- LOGGER.info(f'Loading {w} for ONNX Runtime inference...')
- cuda = torch.cuda.is_available()
- check_requirements(('onnx', 'onnxruntime-gpu' if cuda else 'onnxruntime'))
- import onnxruntime
- providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] if cuda else ['CPUExecutionProvider']
- session = onnxruntime.InferenceSession(w, providers=providers)
- elif xml: # OpenVINO
- LOGGER.info(f'Loading {w} for OpenVINO inference...')
- check_requirements(('openvino-dev',)) # requires openvino-dev: https://pypi.org/project/openvino-dev/
- import openvino.inference_engine as ie
- core = ie.IECore()
- if not Path(w).is_file(): # if not *.xml
- w = next(Path(w).glob('*.xml')) # get *.xml file from *_openvino_model dir
- network = core.read_network(model=w, weights=Path(w).with_suffix('.bin')) # *.xml, *.bin paths
- executable_network = core.load_network(network, device_name='CPU', num_requests=1)
- elif engine: # TensorRT
- LOGGER.info(f'Loading {w} for TensorRT inference...')
- import tensorrt as trt # https://developer.nvidia.com/nvidia-tensorrt-download
- check_version(trt.__version__, '7.0.0', hard=True) # require tensorrt>=7.0.0
- Binding = namedtuple('Binding', ('name', 'dtype', 'shape', 'data', 'ptr'))
- logger = trt.Logger(trt.Logger.INFO)
- with open(w, 'rb') as f, trt.Runtime(logger) as runtime:
- model = runtime.deserialize_cuda_engine(f.read())
- bindings = OrderedDict()
- fp16 = False # default updated below
- for index in range(model.num_bindings):
- name = model.get_binding_name(index)
- dtype = trt.nptype(model.get_binding_dtype(index))
- shape = tuple(model.get_binding_shape(index))
- data = torch.from_numpy(np.empty(shape, dtype=np.dtype(dtype))).to(device)
- bindings[name] = Binding(name, dtype, shape, data, int(data.data_ptr()))
- if model.binding_is_input(index) and dtype == np.float16:
- fp16 = True
- binding_addrs = OrderedDict((n, d.ptr) for n, d in bindings.items())
- context = model.create_execution_context()
- batch_size = bindings['images'].shape[0]
- elif coreml: # CoreML
- LOGGER.info(f'Loading {w} for CoreML inference...')
- import coremltools as ct
- model = ct.models.MLModel(w)
- else: # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU)
- if saved_model: # SavedModel
- LOGGER.info(f'Loading {w} for TensorFlow SavedModel inference...')
- import tensorflow as tf
- keras = False # assume TF1 saved_model
- model = tf.keras.models.load_model(w) if keras else tf.saved_model.load(w)
- elif pb: # GraphDef https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt
- LOGGER.info(f'Loading {w} for TensorFlow GraphDef inference...')
- import tensorflow as tf
-
- def wrap_frozen_graph(gd, inputs, outputs):
- x = tf.compat.v1.wrap_function(lambda: tf.compat.v1.import_graph_def(gd, name=""), []) # wrapped
- ge = x.graph.as_graph_element
- return x.prune(tf.nest.map_structure(ge, inputs), tf.nest.map_structure(ge, outputs))
-
- gd = tf.Graph().as_graph_def() # graph_def
- gd.ParseFromString(open(w, 'rb').read())
- frozen_func = wrap_frozen_graph(gd, inputs="x:0", outputs="Identity:0")
- elif tflite or edgetpu: # https://www.tensorflow.org/lite/guide/python#install_tensorflow_lite_for_python
- try: # https://coral.ai/docs/edgetpu/tflite-python/#update-existing-tf-lite-code-for-the-edge-tpu
- from tflite_runtime.interpreter import Interpreter, load_delegate
- except ImportError:
- import tensorflow as tf
- Interpreter, load_delegate = tf.lite.Interpreter, tf.lite.experimental.load_delegate,
- if edgetpu: # Edge TPU https://coral.ai/software/#edgetpu-runtime
- LOGGER.info(f'Loading {w} for TensorFlow Lite Edge TPU inference...')
- delegate = {'Linux': 'libedgetpu.so.1',
- 'Darwin': 'libedgetpu.1.dylib',
- 'Windows': 'edgetpu.dll'}[platform.system()]
- interpreter = Interpreter(model_path=w, experimental_delegates=[load_delegate(delegate)])
- else: # Lite
- LOGGER.info(f'Loading {w} for TensorFlow Lite inference...')
- interpreter = Interpreter(model_path=w) # load TFLite model
- interpreter.allocate_tensors() # allocate
- input_details = interpreter.get_input_details() # inputs
- output_details = interpreter.get_output_details() # outputs
- elif tfjs:
- raise Exception('ERROR: YOLOv5 TF.js inference is not supported')
- self.__dict__.update(locals()) # assign all variables to self
-
- def forward(self, im, augment=False, visualize=False, val=False):
- # YOLOv5 MultiBackend inference
- b, ch, h, w = im.shape # batch, channel, height, width
- if self.pt or self.jit: # PyTorch
- y = self.model(im) if self.jit else self.model(im, augment=augment, visualize=visualize)
- return y if val else y[0]
- elif self.dnn: # ONNX OpenCV DNN
- im = im.cpu().numpy() # torch to numpy
- self.net.setInput(im)
- y = self.net.forward()
- elif self.onnx: # ONNX Runtime
- im = im.cpu().numpy() # torch to numpy
- y = self.session.run([self.session.get_outputs()[0].name], {self.session.get_inputs()[0].name: im})[0]
- elif self.xml: # OpenVINO
- im = im.cpu().numpy() # FP32
- desc = self.ie.TensorDesc(precision='FP32', dims=im.shape, layout='NCHW') # Tensor Description
- request = self.executable_network.requests[0] # inference request
- request.set_blob(blob_name='images', blob=self.ie.Blob(desc, im)) # name=next(iter(request.input_blobs))
- request.infer()
- y = request.output_blobs['output'].buffer # name=next(iter(request.output_blobs))
- elif self.engine: # TensorRT
- assert im.shape == self.bindings['images'].shape, (im.shape, self.bindings['images'].shape)
- self.binding_addrs['images'] = int(im.data_ptr())
- self.context.execute_v2(list(self.binding_addrs.values()))
- y = self.bindings['output'].data
- elif self.coreml: # CoreML
- im = im.permute(0, 2, 3, 1).cpu().numpy() # torch BCHW to numpy BHWC shape(1,320,192,3)
- im = Image.fromarray((im[0] * 255).astype('uint8'))
- # im = im.resize((192, 320), Image.ANTIALIAS)
- y = self.model.predict({'image': im}) # coordinates are xywh normalized
- if 'confidence' in y:
- box = xywh2xyxy(y['coordinates'] * [[w, h, w, h]]) # xyxy pixels
- conf, cls = y['confidence'].max(1), y['confidence'].argmax(1).astype(np.float)
- y = np.concatenate((box, conf.reshape(-1, 1), cls.reshape(-1, 1)), 1)
- else:
- k = 'var_' + str(sorted(int(k.replace('var_', '')) for k in y)[-1]) # output key
- y = y[k] # output
- else: # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU)
- im = im.permute(0, 2, 3, 1).cpu().numpy() # torch BCHW to numpy BHWC shape(1,320,192,3)
- if self.saved_model: # SavedModel
- y = (self.model(im, training=False) if self.keras else self.model(im)).numpy()
- elif self.pb: # GraphDef
- y = self.frozen_func(x=self.tf.constant(im)).numpy()
- else: # Lite or Edge TPU
- input, output = self.input_details[0], self.output_details[0]
- int8 = input['dtype'] == np.uint8 # is TFLite quantized uint8 model
- if int8:
- scale, zero_point = input['quantization']
- im = (im / scale + zero_point).astype(np.uint8) # de-scale
- self.interpreter.set_tensor(input['index'], im)
- self.interpreter.invoke()
- y = self.interpreter.get_tensor(output['index'])
- if int8:
- scale, zero_point = output['quantization']
- y = (y.astype(np.float32) - zero_point) * scale # re-scale
- y[..., :4] *= [w, h, w, h] # xywh normalized to pixels
-
- if isinstance(y, np.ndarray):
- y = torch.tensor(y, device=self.device)
- return (y, []) if val else y
-
- def warmup(self, imgsz=(1, 3, 640, 640)):
- # Warmup model by running inference once
- if any((self.pt, self.jit, self.onnx, self.engine, self.saved_model, self.pb)): # warmup types
- if self.device.type != 'cpu': # only warmup GPU models
- im = torch.zeros(*imgsz, dtype=torch.half if self.fp16 else torch.float, device=self.device) # input
- for _ in range(2 if self.jit else 1): #
- self.forward(im) # warmup
-
- @staticmethod
- def model_type(p='path/to/model.pt'):
- # Return model type from model path, i.e. path='path/to/model.onnx' -> type=onnx
- from export import export_formats
- suffixes = list(export_formats().Suffix) + ['.xml'] # export suffixes
- check_suffix(p, suffixes) # checks
- p = Path(p).name # eliminate trailing separators
- pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, xml2 = (s in p for s in suffixes)
- xml |= xml2 # *_openvino_model or *.xml
- tflite &= not edgetpu # *.tflite
- return pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs
-
-
- class AutoShape(nn.Module):
- # YOLOv5 input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS
- conf = 0.25 # NMS confidence threshold
- iou = 0.45 # NMS IoU threshold
- agnostic = False # NMS class-agnostic
- multi_label = False # NMS multiple labels per box
- classes = None # (optional list) filter by class, i.e. = [0, 15, 16] for COCO persons, cats and dogs
- max_det = 1000 # maximum number of detections per image
- amp = False # Automatic Mixed Precision (AMP) inference
-
- def __init__(self, model):
- super().__init__()
- LOGGER.info('Adding AutoShape... ')
- copy_attr(self, model, include=('yaml', 'nc', 'hyp', 'names', 'stride', 'abc'), exclude=()) # copy attributes
- self.dmb = isinstance(model, DetectMultiBackend) # DetectMultiBackend() instance
- self.pt = not self.dmb or model.pt # PyTorch model
- self.model = model.eval()
-
- def _apply(self, fn):
- # Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
- self = super()._apply(fn)
- if self.pt:
- m = self.model.model.model[-1] if self.dmb else self.model.model[-1] # Detect()
- m.stride = fn(m.stride)
- m.grid = list(map(fn, m.grid))
- if isinstance(m.anchor_grid, list):
- m.anchor_grid = list(map(fn, m.anchor_grid))
- return self
-
- @torch.no_grad()
- def forward(self, imgs, size=640, augment=False, profile=False):
- # Inference from various sources. For height=640, width=1280, RGB images example inputs are:
- # file: imgs = 'data/images/zidane.jpg' # str or PosixPath
- # URI: = 'https://ultralytics.com/images/zidane.jpg'
- # OpenCV: = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(640,1280,3)
- # PIL: = Image.open('image.jpg') or ImageGrab.grab() # HWC x(640,1280,3)
- # numpy: = np.zeros((640,1280,3)) # HWC
- # torch: = torch.zeros(16,3,320,640) # BCHW (scaled to size=640, 0-1 values)
- # multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images
-
- t = [time_sync()]
- p = next(self.model.parameters()) if self.pt else torch.zeros(1) # for device and type
- autocast = self.amp and (p.device.type != 'cpu') # Automatic Mixed Precision (AMP) inference
- if isinstance(imgs, torch.Tensor): # torch
- with amp.autocast(autocast):
- return self.model(imgs.to(p.device).type_as(p), augment, profile) # inference
-
- # Pre-process
- n, imgs = (len(imgs), imgs) if isinstance(imgs, list) else (1, [imgs]) # number of images, list of images
- shape0, shape1, files = [], [], [] # image and inference shapes, filenames
- for i, im in enumerate(imgs):
- f = f'image{i}' # filename
- if isinstance(im, (str, Path)): # filename or uri
- im, f = Image.open(requests.get(im, stream=True).raw if str(im).startswith('http') else im), im
- im = np.asarray(exif_transpose(im))
- elif isinstance(im, Image.Image): # PIL Image
- im, f = np.asarray(exif_transpose(im)), getattr(im, 'filename', f) or f
- files.append(Path(f).with_suffix('.jpg').name)
- if im.shape[0] < 5: # image in CHW
- im = im.transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1)
- im = im[..., :3] if im.ndim == 3 else np.tile(im[..., None], 3) # enforce 3ch input
- s = im.shape[:2] # HWC
- shape0.append(s) # image shape
- g = (size / max(s)) # gain
- shape1.append([y * g for y in s])
- imgs[i] = im if im.data.contiguous else np.ascontiguousarray(im) # update
- shape1 = [make_divisible(x, self.stride) if self.pt else size for x in np.array(shape1).max(0)] # inf shape
- x = [letterbox(im, shape1, auto=False)[0] for im in imgs] # pad
- x = np.ascontiguousarray(np.array(x).transpose((0, 3, 1, 2))) # stack and BHWC to BCHW
- x = torch.from_numpy(x).to(p.device).type_as(p) / 255 # uint8 to fp16/32
- t.append(time_sync())
-
- with amp.autocast(autocast):
- # Inference
- y = self.model(x, augment, profile) # forward
- t.append(time_sync())
-
- # Post-process
- y = non_max_suppression(y if self.dmb else y[0], self.conf, self.iou, self.classes, self.agnostic,
- self.multi_label, max_det=self.max_det) # NMS
- for i in range(n):
- scale_coords(shape1, y[i][:, :4], shape0[i])
-
- t.append(time_sync())
- return Detections(imgs, y, files, t, self.names, x.shape)
-
-
- class Detections:
- # YOLOv5 detections class for inference results
- def __init__(self, imgs, pred, files, times=(0, 0, 0, 0), names=None, shape=None):
- super().__init__()
- d = pred[0].device # device
- gn = [torch.tensor([*(im.shape[i] for i in [1, 0, 1, 0]), 1, 1], device=d) for im in imgs] # normalizations
- self.imgs = imgs # list of images as numpy arrays
- self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls)
- self.names = names # class names
- self.files = files # image filenames
- self.times = times # profiling times
- self.xyxy = pred # xyxy pixels
- self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels
- self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized
- self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized
- self.n = len(self.pred) # number of images (batch size)
- self.t = tuple((times[i + 1] - times[i]) * 1000 / self.n for i in range(3)) # timestamps (ms)
- self.s = shape # inference BCHW shape
-
- def display(self, pprint=False, show=False, save=False, crop=False, render=False, labels=True, save_dir=Path('')):
- crops = []
- for i, (im, pred) in enumerate(zip(self.imgs, self.pred)):
- s = f'image {i + 1}/{len(self.pred)}: {im.shape[0]}x{im.shape[1]} ' # string
- if pred.shape[0]:
- for c in pred[:, -1].unique():
- n = (pred[:, -1] == c).sum() # detections per class
- s += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " # add to string
- if show or save or render or crop:
- annotator = Annotator(im, example=str(self.names))
- for *box, conf, cls in reversed(pred): # xyxy, confidence, class
- label = f'{self.names[int(cls)]} {conf:.2f}'
- if crop:
- file = save_dir / 'crops' / self.names[int(cls)] / self.files[i] if save else None
- crops.append({'box': box, 'conf': conf, 'cls': cls, 'label': label,
- 'im': save_one_box(box, im, file=file, save=save)})
- else: # all others
- annotator.box_label(box, label if labels else '', color=colors(cls))
- im = annotator.im
- else:
- s += '(no detections)'
-
- im = Image.fromarray(im.astype(np.uint8)) if isinstance(im, np.ndarray) else im # from np
- if pprint:
- LOGGER.info(s.rstrip(', '))
- if show:
- im.show(self.files[i]) # show
- if save:
- f = self.files[i]
- im.save(save_dir / f) # save
- if i == self.n - 1:
- LOGGER.info(f"Saved {self.n} image{'s' * (self.n > 1)} to {colorstr('bold', save_dir)}")
- if render:
- self.imgs[i] = np.asarray(im)
- if crop:
- if save:
- LOGGER.info(f'Saved results to {save_dir}\n')
- return crops
-
- def print(self):
- self.display(pprint=True) # print results
- LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {tuple(self.s)}' %
- self.t)
-
- def show(self, labels=True):
- self.display(show=True, labels=labels) # show results
-
- def save(self, labels=True, save_dir='runs/detect/exp'):
- save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/detect/exp', mkdir=True) # increment save_dir
- self.display(save=True, labels=labels, save_dir=save_dir) # save results
-
- def crop(self, save=True, save_dir='runs/detect/exp'):
- save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/detect/exp', mkdir=True) if save else None
- return self.display(crop=True, save=save, save_dir=save_dir) # crop results
-
- def render(self, labels=True):
- self.display(render=True, labels=labels) # render results
- return self.imgs
-
- def pandas(self):
- # return detections as pandas DataFrames, i.e. print(results.pandas().xyxy[0])
- new = copy(self) # return copy
- ca = 'xmin', 'ymin', 'xmax', 'ymax', 'confidence', 'class', 'name' # xyxy columns
- cb = 'xcenter', 'ycenter', 'width', 'height', 'confidence', 'class', 'name' # xywh columns
- for k, c in zip(['xyxy', 'xyxyn', 'xywh', 'xywhn'], [ca, ca, cb, cb]):
- a = [[x[:5] + [int(x[5]), self.names[int(x[5])]] for x in x.tolist()] for x in getattr(self, k)] # update
- setattr(new, k, [pd.DataFrame(x, columns=c) for x in a])
- return new
-
- def tolist(self):
- # return a list of Detections objects, i.e. 'for result in results.tolist():'
- r = range(self.n) # iterable
- x = [Detections([self.imgs[i]], [self.pred[i]], [self.files[i]], self.times, self.names, self.s) for i in r]
- # for d in x:
- # for k in ['imgs', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']:
- # setattr(d, k, getattr(d, k)[0]) # pop out of list
- return x
-
- def __len__(self):
- return self.n
-
-
- class Classify(nn.Module):
- # Classification head, i.e. x(b,c1,20,20) to x(b,c2)
- def __init__(self, c1, c2, k=1, s=1, p=None, g=1): # ch_in, ch_out, kernel, stride, padding, groups
- super().__init__()
- self.aap = nn.AdaptiveAvgPool2d(1) # to x(b,c1,1,1)
- self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g) # to x(b,c2,1,1)
- self.flat = nn.Flatten()
-
- def forward(self, x):
- z = torch.cat([self.aap(y) for y in (x if isinstance(x, list) else [x])], 1) # cat if list
- return self.flat(self.conv(z)) # flatten to x(b,c2)
|