You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

README.md 11KB

4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155
  1. <a href="https://apps.apple.com/app/id1452689527" target="_blank">
  2. <img src="https://user-images.githubusercontent.com/26833433/98699617-a1595a00-2377-11eb-8145-fc674eb9b1a7.jpg" width="1000"></a>
  3. &nbsp
  4. <a href="https://github.com/ultralytics/yolov5/actions"><img src="https://github.com/ultralytics/yolov5/workflows/CI%20CPU%20testing/badge.svg" alt="CI CPU testing"></a>
  5. This repository represents Ultralytics open-source research into future object detection methods, and incorporates lessons learned and best practices evolved over thousands of hours of training and evolution on anonymized client datasets. **All code and models are under active development, and are subject to modification or deletion without notice.** Use at your own risk.
  6. <img src="https://user-images.githubusercontent.com/26833433/103594689-455e0e00-4eae-11eb-9cdf-7d753e2ceeeb.png" width="1000">** GPU Speed measures end-to-end time per image averaged over 5000 COCO val2017 images using a V100 GPU with batch size 32, and includes image preprocessing, PyTorch FP16 inference, postprocessing and NMS. EfficientDet data from [google/automl](https://github.com/google/automl) at batch size 8.
  7. - **January 5, 2021**: [v4.0 release](https://github.com/ultralytics/yolov5/releases/tag/v4.0): nn.SiLU() activations, [Weights & Biases](https://wandb.ai/) logging, [PyTorch Hub](https://pytorch.org/hub/ultralytics_yolov5/) integration.
  8. - **August 13, 2020**: [v3.0 release](https://github.com/ultralytics/yolov5/releases/tag/v3.0): nn.Hardswish() activations, data autodownload, native AMP.
  9. - **July 23, 2020**: [v2.0 release](https://github.com/ultralytics/yolov5/releases/tag/v2.0): improved model definition, training and mAP.
  10. - **June 22, 2020**: [PANet](https://arxiv.org/abs/1803.01534) updates: new heads, reduced parameters, improved speed and mAP [364fcfd](https://github.com/ultralytics/yolov5/commit/364fcfd7dba53f46edd4f04c037a039c0a287972).
  11. - **June 19, 2020**: [FP16](https://pytorch.org/docs/stable/nn.html#torch.nn.Module.half) as new default for smaller checkpoints and faster inference [d4c6674](https://github.com/ultralytics/yolov5/commit/d4c6674c98e19df4c40e33a777610a18d1961145).
  12. ## Pretrained Checkpoints
  13. | Model | size | AP<sup>val</sup> | AP<sup>test</sup> | AP<sub>50</sub> | Speed<sub>V100</sub> | FPS<sub>V100</sub> || params | GFLOPS |
  14. |---------- |------ |------ |------ |------ | -------- | ------| ------ |------ | :------: |
  15. | [YOLOv5s](https://github.com/ultralytics/yolov5/releases) |640 |36.8 |36.8 |55.6 |**2.2ms** |**455** ||7.3M |17.0
  16. | [YOLOv5m](https://github.com/ultralytics/yolov5/releases) |640 |44.5 |44.5 |63.1 |2.9ms |345 ||21.4M |51.3
  17. | [YOLOv5l](https://github.com/ultralytics/yolov5/releases) |640 |48.1 |48.1 |66.4 |3.8ms |264 ||47.0M |115.4
  18. | [YOLOv5x](https://github.com/ultralytics/yolov5/releases) |640 |**50.1** |**50.1** |**68.7** |6.0ms |167 ||87.7M |218.8
  19. | | | | | | | || |
  20. | [YOLOv5x](https://github.com/ultralytics/yolov5/releases) + TTA |832 |**51.9** |**51.9** |**69.6** |24.9ms |40 ||87.7M |1005.3
  21. <!---
  22. | [YOLOv5l6](https://github.com/ultralytics/yolov5/releases) |640 |49.0 |49.0 |67.4 |4.1ms |244 ||77.2M |117.7
  23. | [YOLOv5l6](https://github.com/ultralytics/yolov5/releases) |1280 |53.0 |53.0 |70.8 |12.3ms |81 ||77.2M |117.7
  24. --->
  25. ** AP<sup>test</sup> denotes COCO [test-dev2017](http://cocodataset.org/#upload) server results, all other AP results denote val2017 accuracy.
  26. ** All AP numbers are for single-model single-scale without ensemble or TTA. **Reproduce mAP** by `python test.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65`
  27. ** Speed<sub>GPU</sub> averaged over 5000 COCO val2017 images using a GCP [n1-standard-16](https://cloud.google.com/compute/docs/machine-types#n1_standard_machine_types) V100 instance, and includes image preprocessing, FP16 inference, postprocessing and NMS. NMS is 1-2ms/img. **Reproduce speed** by `python test.py --data coco.yaml --img 640 --conf 0.25 --iou 0.45`
  28. ** All checkpoints are trained to 300 epochs with default settings and hyperparameters (no autoaugmentation).
  29. ** Test Time Augmentation ([TTA](https://github.com/ultralytics/yolov5/issues/303)) runs at 3 image sizes. **Reproduce TTA** by `python test.py --data coco.yaml --img 832 --iou 0.65 --augment`
  30. ## Requirements
  31. Python 3.8 or later with all [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) dependencies installed, including `torch>=1.7`. To install run:
  32. ```bash
  33. $ pip install -r requirements.txt
  34. ```
  35. ## Tutorials
  36. * [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data)&nbsp; 🚀 RECOMMENDED
  37. * [Weights & Biases Logging](https://github.com/ultralytics/yolov5/issues/1289)&nbsp; 🌟 NEW
  38. * [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475)
  39. * [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36)&nbsp; ⭐ NEW
  40. * [ONNX and TorchScript Export](https://github.com/ultralytics/yolov5/issues/251)
  41. * [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303)
  42. * [Model Ensembling](https://github.com/ultralytics/yolov5/issues/318)
  43. * [Model Pruning/Sparsity](https://github.com/ultralytics/yolov5/issues/304)
  44. * [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607)
  45. * [Transfer Learning with Frozen Layers](https://github.com/ultralytics/yolov5/issues/1314)&nbsp; ⭐ NEW
  46. * [TensorRT Deployment](https://github.com/wang-xinyu/tensorrtx)
  47. ## Environments
  48. YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):
  49. - **Google Colab and Kaggle** notebooks with free GPU: <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
  50. - **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)
  51. - **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart)
  52. - **Docker Image**. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) <a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
  53. ## Inference
  54. detect.py runs inference on a variety of sources, downloading models automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`.
  55. ```bash
  56. $ python detect.py --source 0 # webcam
  57. file.jpg # image
  58. file.mp4 # video
  59. path/ # directory
  60. path/*.jpg # glob
  61. rtsp://170.93.143.139/rtplive/470011e600ef003a004ee33696235daa # rtsp stream
  62. rtmp://192.168.1.105/live/test # rtmp stream
  63. http://112.50.243.8/PLTV/88888888/224/3221225900/1.m3u8 # http stream
  64. ```
  65. To run inference on example images in `data/images`:
  66. ```bash
  67. $ python detect.py --source data/images --weights yolov5s.pt --conf 0.25
  68. Namespace(agnostic_nms=False, augment=False, classes=None, conf_thres=0.25, device='', img_size=640, iou_thres=0.45, save_conf=False, save_dir='runs/detect', save_txt=False, source='data/images/', update=False, view_img=False, weights=['yolov5s.pt'])
  69. Using torch 1.7.0+cu101 CUDA:0 (Tesla V100-SXM2-16GB, 16130MB)
  70. Downloading https://github.com/ultralytics/yolov5/releases/download/v3.1/yolov5s.pt to yolov5s.pt... 100%|██████████████| 14.5M/14.5M [00:00<00:00, 21.3MB/s]
  71. Fusing layers...
  72. Model Summary: 232 layers, 7459581 parameters, 0 gradients
  73. image 1/2 data/images/bus.jpg: 640x480 4 persons, 1 buss, 1 skateboards, Done. (0.012s)
  74. image 2/2 data/images/zidane.jpg: 384x640 2 persons, 2 ties, Done. (0.012s)
  75. Results saved to runs/detect/exp
  76. Done. (0.113s)
  77. ```
  78. <img src="https://user-images.githubusercontent.com/26833433/97107365-685a8d80-16c7-11eb-8c2e-83aac701d8b9.jpeg" width="500">
  79. ### PyTorch Hub
  80. To run **batched inference** with YOLOv5 and [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36):
  81. ```python
  82. import torch
  83. from PIL import Image
  84. # Model
  85. model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True)
  86. # Images
  87. img1 = Image.open('zidane.jpg')
  88. img2 = Image.open('bus.jpg')
  89. imgs = [img1, img2] # batched list of images
  90. # Inference
  91. result = model(imgs)
  92. ```
  93. ## Training
  94. Run commands below to reproduce results on [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh) dataset (dataset auto-downloads on first use). Training times for YOLOv5s/m/l/x are 2/4/6/8 days on a single V100 (multi-GPU times faster). Use the largest `--batch-size` your GPU allows (batch sizes shown for 16 GB devices).
  95. ```bash
  96. $ python train.py --data coco.yaml --cfg yolov5s.yaml --weights '' --batch-size 64
  97. yolov5m 40
  98. yolov5l 24
  99. yolov5x 16
  100. ```
  101. <img src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png" width="900">
  102. ## Citation
  103. [![DOI](https://zenodo.org/badge/264818686.svg)](https://zenodo.org/badge/latestdoi/264818686)
  104. ## About Us
  105. Ultralytics is a U.S.-based particle physics and AI startup with over 6 years of expertise supporting government, academic and business clients. We offer a wide range of vision AI services, spanning from simple expert advice up to delivery of fully customized, end-to-end production solutions, including:
  106. - **Cloud-based AI** systems operating on **hundreds of HD video streams in realtime.**
  107. - **Edge AI** integrated into custom iOS and Android apps for realtime **30 FPS video inference.**
  108. - **Custom data training**, hyperparameter evolution, and model exportation to any destination.
  109. For business inquiries and professional support requests please visit us at https://www.ultralytics.com.
  110. ## Contact
  111. **Issues should be raised directly in the repository.** For business inquiries or professional support requests please visit https://www.ultralytics.com or email Glenn Jocher at glenn.jocher@ultralytics.com.