|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130 |
- <a href="https://apps.apple.com/app/id1452689527" target="_blank">
- <img src="https://user-images.githubusercontent.com/26833433/82944393-f7644d80-9f4f-11ea-8b87-1a5b04f555f1.jpg" width="1000"></a>
-  
-
- ![CI CPU testing](https://github.com/ultralytics/yolov5/workflows/CI%20CPU%20testing/badge.svg)
-
- This repository represents Ultralytics open-source research into future object detection methods, and incorporates our lessons learned and best practices evolved over training thousands of models on custom client datasets with our previous YOLO repository https://github.com/ultralytics/yolov3. **All code and models are under active development, and are subject to modification or deletion without notice.** Use at your own risk.
-
- <img src="https://user-images.githubusercontent.com/26833433/90187293-6773ba00-dd6e-11ea-8f90-cd94afc0427f.png" width="1000">** GPU Speed measures end-to-end time per image averaged over 5000 COCO val2017 images using a V100 GPU with batch size 32, and includes image preprocessing, PyTorch FP16 inference, postprocessing and NMS. EfficientDet data from [google/automl](https://github.com/google/automl) at batch size 8.
-
- - **August 13, 2020**: [v3.0 release](https://github.com/ultralytics/yolov5/releases/tag/v3.0): nn.Hardswish() activations, data autodownload, native AMP.
- - **July 23, 2020**: [v2.0 release](https://github.com/ultralytics/yolov5/releases/tag/v2.0): improved model definition, training and mAP.
- - **June 22, 2020**: [PANet](https://arxiv.org/abs/1803.01534) updates: new heads, reduced parameters, improved speed and mAP [364fcfd](https://github.com/ultralytics/yolov5/commit/364fcfd7dba53f46edd4f04c037a039c0a287972).
- - **June 19, 2020**: [FP16](https://pytorch.org/docs/stable/nn.html#torch.nn.Module.half) as new default for smaller checkpoints and faster inference [d4c6674](https://github.com/ultralytics/yolov5/commit/d4c6674c98e19df4c40e33a777610a18d1961145).
- - **June 9, 2020**: [CSP](https://github.com/WongKinYiu/CrossStagePartialNetworks) updates: improved speed, size, and accuracy (credit to @WongKinYiu for CSP).
- - **May 27, 2020**: Public release. YOLOv5 models are SOTA among all known YOLO implementations.
- - **April 1, 2020**: Start development of future compound-scaled [YOLOv3](https://github.com/ultralytics/yolov3)/[YOLOv4](https://github.com/AlexeyAB/darknet)-based PyTorch models.
-
-
- ## Pretrained Checkpoints
-
- | Model | AP<sup>val</sup> | AP<sup>test</sup> | AP<sub>50</sub> | Speed<sub>GPU</sub> | FPS<sub>GPU</sub> || params | FLOPS |
- |---------- |------ |------ |------ | -------- | ------| ------ |------ | :------: |
- | [YOLOv5s](https://github.com/ultralytics/yolov5/releases/tag/v3.0) | 37.0 | 37.0 | 56.2 | **2.4ms** | **416** || 7.5M | 13.2B
- | [YOLOv5m](https://github.com/ultralytics/yolov5/releases/tag/v3.0) | 44.3 | 44.3 | 63.2 | 3.4ms | 294 || 21.8M | 39.4B
- | [YOLOv5l](https://github.com/ultralytics/yolov5/releases/tag/v3.0) | 47.7 | 47.7 | 66.5 | 4.4ms | 227 || 47.8M | 88.1B
- | [YOLOv5x](https://github.com/ultralytics/yolov5/releases/tag/v3.0) | **49.2** | **49.2** | **67.7** | 6.9ms | 145 || 89.0M | 166.4B
- | | | | | | || |
- | [YOLOv5x](https://github.com/ultralytics/yolov5/releases/tag/v3.0) + TTA|**50.8**| **50.8** | **68.9** | 25.5ms | 39 || 89.0M | 354.3B
- | | | | | | || |
- | [YOLOv3-SPP](https://github.com/ultralytics/yolov5/releases/tag/v3.0) | 45.6 | 45.5 | 65.2 | 4.5ms | 222 || 63.0M | 118.0B
-
- ** AP<sup>test</sup> denotes COCO [test-dev2017](http://cocodataset.org/#upload) server results, all other AP results in the table denote val2017 accuracy.
- ** All AP numbers are for single-model single-scale without ensemble or test-time augmentation. **Reproduce** by `python test.py --data coco.yaml --img 640 --conf 0.001`
- ** Speed<sub>GPU</sub> measures end-to-end time per image averaged over 5000 COCO val2017 images using a GCP [n1-standard-16](https://cloud.google.com/compute/docs/machine-types#n1_standard_machine_types) instance with one V100 GPU, and includes image preprocessing, PyTorch FP16 image inference at --batch-size 32 --img-size 640, postprocessing and NMS. Average NMS time included in this chart is 1-2ms/img. **Reproduce** by `python test.py --data coco.yaml --img 640 --conf 0.1`
- ** All checkpoints are trained to 300 epochs with default settings and hyperparameters (no autoaugmentation).
- ** Test Time Augmentation ([TTA](https://github.com/ultralytics/yolov5/issues/303)) runs at 3 image sizes. **Reproduce** by `python test.py --data coco.yaml --img 832 --augment`
-
- ## Requirements
-
- Python 3.8 or later with all [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) dependencies installed, including `torch>=1.6`. To install run:
- ```bash
- $ pip install -r requirements.txt
- ```
-
-
- ## Tutorials
-
- * [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data)
- * [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475)
- * [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36)
- * [ONNX and TorchScript Export](https://github.com/ultralytics/yolov5/issues/251)
- * [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303)
- * [Model Ensembling](https://github.com/ultralytics/yolov5/issues/318)
- * [Model Pruning/Sparsity](https://github.com/ultralytics/yolov5/issues/304)
- * [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607)
- * [TensorRT Deployment](https://github.com/wang-xinyu/tensorrtx)
-
-
- ## Environments
-
- YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):
-
- - **Google Colab Notebook** with free GPU: <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
- - **Kaggle Notebook** with free GPU: [https://www.kaggle.com/ultralytics/yolov5](https://www.kaggle.com/ultralytics/yolov5)
- - **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)
- - **Docker Image** https://hub.docker.com/r/ultralytics/yolov5. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) ![Docker Pulls](https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker)
-
-
- ## Inference
-
- Inference can be run on most common media formats. Model [checkpoints](https://drive.google.com/open?id=1Drs_Aiu7xx6S-ix95f9kNsA6ueKRpN2J) are downloaded automatically if available. Results are saved to `./inference/output`.
- ```bash
- $ python detect.py --source 0 # webcam
- file.jpg # image
- file.mp4 # video
- path/ # directory
- path/*.jpg # glob
- rtsp://170.93.143.139/rtplive/470011e600ef003a004ee33696235daa # rtsp stream
- http://112.50.243.8/PLTV/88888888/224/3221225900/1.m3u8 # http stream
- ```
-
- To run inference on examples in the `./inference/images` folder:
-
- ```bash
- $ python detect.py --source ./inference/images/ --weights yolov5s.pt --conf 0.4
-
- Namespace(agnostic_nms=False, augment=False, classes=None, conf_thres=0.4, device='', fourcc='mp4v', half=False, img_size=640, iou_thres=0.5, output='inference/output', save_txt=False, source='./inference/images/', view_img=False, weights='yolov5s.pt')
- Using CUDA device0 _CudaDeviceProperties(name='Tesla P100-PCIE-16GB', total_memory=16280MB)
-
- Downloading https://drive.google.com/uc?export=download&id=1R5T6rIyy3lLwgFXNms8whc-387H0tMQO as yolov5s.pt... Done (2.6s)
-
- image 1/2 inference/images/bus.jpg: 640x512 3 persons, 1 buss, Done. (0.009s)
- image 2/2 inference/images/zidane.jpg: 384x640 2 persons, 2 ties, Done. (0.009s)
- Results saved to /content/yolov5/inference/output
- ```
-
- <img src="https://user-images.githubusercontent.com/26833433/83082816-59e54880-a039-11ea-8abe-ab90cc1ec4b0.jpeg" width="500">
-
-
- ## Training
-
- Download [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh) and run command below. Training times for YOLOv5s/m/l/x are 2/4/6/8 days on a single V100 (multi-GPU times faster). Use the largest `--batch-size` your GPU allows (batch sizes shown for 16 GB devices).
- ```bash
- $ python train.py --data coco.yaml --cfg yolov5s.yaml --weights '' --batch-size 64
- yolov5m 40
- yolov5l 24
- yolov5x 16
- ```
- <img src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png" width="900">
-
-
- ## Citation
-
- [![DOI](https://zenodo.org/badge/264818686.svg)](https://zenodo.org/badge/latestdoi/264818686)
-
-
- ## About Us
-
- Ultralytics is a U.S.-based particle physics and AI startup with over 6 years of expertise supporting government, academic and business clients. We offer a wide range of vision AI services, spanning from simple expert advice up to delivery of fully customized, end-to-end production solutions, including:
- - **Cloud-based AI** systems operating on **hundreds of HD video streams in realtime.**
- - **Edge AI** integrated into custom iOS and Android apps for realtime **30 FPS video inference.**
- - **Custom data training**, hyperparameter evolution, and model exportation to any destination.
-
- For business inquiries and professional support requests please visit us at https://www.ultralytics.com.
-
-
- ## Contact
-
- **Issues should be raised directly in the repository.** For business inquiries or professional support requests please visit https://www.ultralytics.com or email Glenn Jocher at glenn.jocher@ultralytics.com.
|