You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

torch_utils.py 13KB

Merge `develop` branch into `master` (#3518) * update ci-testing.yml (#3322) * update ci-testing.yml * update greetings.yml * bring back os matrix * update ci-testing.yml (#3322) * update ci-testing.yml * update greetings.yml * bring back os matrix * Enable direct `--weights URL` definition (#3373) * Enable direct `--weights URL` definition @KalenMike this PR will enable direct --weights URL definition. Example use case: ``` python train.py --weights https://storage.googleapis.com/bucket/dir/model.pt ``` * cleanup * bug fixes * weights = attempt_download(weights) * Update experimental.py * Update hubconf.py * return bug fix * comment mirror * min_bytes * Update tutorial.ipynb (#3368) add Open in Kaggle badge * `cv2.imread(img, -1)` for IMREAD_UNCHANGED (#3379) * Update datasets.py * comment Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * COCO evolution fix (#3388) * COCO evolution fix * cleanup * update print * print fix * Create `is_pip()` function (#3391) Returns `True` if file is part of pip package. Useful for contextual behavior modification. ```python def is_pip(): # Is file in a pip package? return 'site-packages' in Path(__file__).absolute().parts ``` * Revert "`cv2.imread(img, -1)` for IMREAD_UNCHANGED (#3379)" (#3395) This reverts commit 21a9607e00f1365b21d8c4bd81bdbf5fc0efea24. * Update FLOPs description (#3422) * Update README.md * Changing FLOPS to FLOPs. Co-authored-by: BuildTools <unconfigured@null.spigotmc.org> * Parse URL authentication (#3424) * Parse URL authentication * urllib.parse.unquote() * improved error handling * improved error handling * remove %3F * update check_file() * Add FLOPs title to table (#3453) * Suppress jit trace warning + graph once (#3454) * Suppress jit trace warning + graph once Suppress harmless jit trace warning on TensorBoard add_graph call. Also fix multiple add_graph() calls bug, now only on batch 0. * Update train.py * Update MixUp augmentation `alpha=beta=32.0` (#3455) Per VOC empirical results https://github.com/ultralytics/yolov5/issues/3380#issuecomment-853001307 by @developer0hye * Add `timeout()` class (#3460) * Add `timeout()` class * rearrange order * Faster HSV augmentation (#3462) remove datatype conversion process that can be skipped * Add `check_git_status()` 5 second timeout (#3464) * Add check_git_status() 5 second timeout This should prevent the SSH Git bug that we were discussing @KalenMike * cleanup * replace timeout with check_output built-in timeout * Improved `check_requirements()` offline-handling (#3466) Improve robustness of `check_requirements()` function to offline environments (do not attempt pip installs when offline). * Add `output_names` argument for ONNX export with dynamic axes (#3456) * Add output names & dynamic axes for onnx export Add output_names and dynamic_axes names for all outputs in torch.onnx.export. The first four outputs of the model will have names output0, output1, output2, output3 * use first output only + cleanup Co-authored-by: Samridha Shrestha <samridha.shrestha@g42.ai> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Revert FP16 `test.py` and `detect.py` inference to FP32 default (#3423) * fixed inference bug ,while use half precision * replace --use-half with --half * replace space and PEP8 in detect.py * PEP8 detect.py * update --half help comment * Update test.py * revert space Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Add additional links/resources to stale.yml message (#3467) * Update stale.yml * cleanup * Update stale.yml * reformat * Update stale.yml HUB URL (#3468) * Stale `github.actor` bug fix (#3483) * Explicit `model.eval()` call `if opt.train=False` (#3475) * call model.eval() when opt.train is False call model.eval() when opt.train is False * single-line if statement * cleanup Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * check_requirements() exclude `opencv-python` (#3495) Fix for 3rd party or contrib versions of installed OpenCV as in https://github.com/ultralytics/yolov5/issues/3494. * Earlier `assert` for cpu and half option (#3508) * early assert for cpu and half option early assert for cpu and half option * Modified comment Modified comment * Update tutorial.ipynb (#3510) * Reduce test.py results spacing (#3511) * Update README.md (#3512) * Update README.md Minor modifications * 850 width * Update greetings.yml revert greeting change as PRs will now merge to master. Co-authored-by: Piotr Skalski <SkalskiP@users.noreply.github.com> Co-authored-by: SkalskiP <piotr.skalski92@gmail.com> Co-authored-by: Peretz Cohen <pizzaz93@users.noreply.github.com> Co-authored-by: tudoulei <34886368+tudoulei@users.noreply.github.com> Co-authored-by: chocosaj <chocosaj@users.noreply.github.com> Co-authored-by: BuildTools <unconfigured@null.spigotmc.org> Co-authored-by: Yonghye Kwon <developer.0hye@gmail.com> Co-authored-by: Sam_S <SamSamhuns@users.noreply.github.com> Co-authored-by: Samridha Shrestha <samridha.shrestha@g42.ai> Co-authored-by: edificewang <609552430@qq.com>
3 anni fa
Merge `develop` branch into `master` (#3518) * update ci-testing.yml (#3322) * update ci-testing.yml * update greetings.yml * bring back os matrix * update ci-testing.yml (#3322) * update ci-testing.yml * update greetings.yml * bring back os matrix * Enable direct `--weights URL` definition (#3373) * Enable direct `--weights URL` definition @KalenMike this PR will enable direct --weights URL definition. Example use case: ``` python train.py --weights https://storage.googleapis.com/bucket/dir/model.pt ``` * cleanup * bug fixes * weights = attempt_download(weights) * Update experimental.py * Update hubconf.py * return bug fix * comment mirror * min_bytes * Update tutorial.ipynb (#3368) add Open in Kaggle badge * `cv2.imread(img, -1)` for IMREAD_UNCHANGED (#3379) * Update datasets.py * comment Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * COCO evolution fix (#3388) * COCO evolution fix * cleanup * update print * print fix * Create `is_pip()` function (#3391) Returns `True` if file is part of pip package. Useful for contextual behavior modification. ```python def is_pip(): # Is file in a pip package? return 'site-packages' in Path(__file__).absolute().parts ``` * Revert "`cv2.imread(img, -1)` for IMREAD_UNCHANGED (#3379)" (#3395) This reverts commit 21a9607e00f1365b21d8c4bd81bdbf5fc0efea24. * Update FLOPs description (#3422) * Update README.md * Changing FLOPS to FLOPs. Co-authored-by: BuildTools <unconfigured@null.spigotmc.org> * Parse URL authentication (#3424) * Parse URL authentication * urllib.parse.unquote() * improved error handling * improved error handling * remove %3F * update check_file() * Add FLOPs title to table (#3453) * Suppress jit trace warning + graph once (#3454) * Suppress jit trace warning + graph once Suppress harmless jit trace warning on TensorBoard add_graph call. Also fix multiple add_graph() calls bug, now only on batch 0. * Update train.py * Update MixUp augmentation `alpha=beta=32.0` (#3455) Per VOC empirical results https://github.com/ultralytics/yolov5/issues/3380#issuecomment-853001307 by @developer0hye * Add `timeout()` class (#3460) * Add `timeout()` class * rearrange order * Faster HSV augmentation (#3462) remove datatype conversion process that can be skipped * Add `check_git_status()` 5 second timeout (#3464) * Add check_git_status() 5 second timeout This should prevent the SSH Git bug that we were discussing @KalenMike * cleanup * replace timeout with check_output built-in timeout * Improved `check_requirements()` offline-handling (#3466) Improve robustness of `check_requirements()` function to offline environments (do not attempt pip installs when offline). * Add `output_names` argument for ONNX export with dynamic axes (#3456) * Add output names & dynamic axes for onnx export Add output_names and dynamic_axes names for all outputs in torch.onnx.export. The first four outputs of the model will have names output0, output1, output2, output3 * use first output only + cleanup Co-authored-by: Samridha Shrestha <samridha.shrestha@g42.ai> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Revert FP16 `test.py` and `detect.py` inference to FP32 default (#3423) * fixed inference bug ,while use half precision * replace --use-half with --half * replace space and PEP8 in detect.py * PEP8 detect.py * update --half help comment * Update test.py * revert space Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Add additional links/resources to stale.yml message (#3467) * Update stale.yml * cleanup * Update stale.yml * reformat * Update stale.yml HUB URL (#3468) * Stale `github.actor` bug fix (#3483) * Explicit `model.eval()` call `if opt.train=False` (#3475) * call model.eval() when opt.train is False call model.eval() when opt.train is False * single-line if statement * cleanup Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * check_requirements() exclude `opencv-python` (#3495) Fix for 3rd party or contrib versions of installed OpenCV as in https://github.com/ultralytics/yolov5/issues/3494. * Earlier `assert` for cpu and half option (#3508) * early assert for cpu and half option early assert for cpu and half option * Modified comment Modified comment * Update tutorial.ipynb (#3510) * Reduce test.py results spacing (#3511) * Update README.md (#3512) * Update README.md Minor modifications * 850 width * Update greetings.yml revert greeting change as PRs will now merge to master. Co-authored-by: Piotr Skalski <SkalskiP@users.noreply.github.com> Co-authored-by: SkalskiP <piotr.skalski92@gmail.com> Co-authored-by: Peretz Cohen <pizzaz93@users.noreply.github.com> Co-authored-by: tudoulei <34886368+tudoulei@users.noreply.github.com> Co-authored-by: chocosaj <chocosaj@users.noreply.github.com> Co-authored-by: BuildTools <unconfigured@null.spigotmc.org> Co-authored-by: Yonghye Kwon <developer.0hye@gmail.com> Co-authored-by: Sam_S <SamSamhuns@users.noreply.github.com> Co-authored-by: Samridha Shrestha <samridha.shrestha@g42.ai> Co-authored-by: edificewang <609552430@qq.com>
3 anni fa
Merge `develop` branch into `master` (#3518) * update ci-testing.yml (#3322) * update ci-testing.yml * update greetings.yml * bring back os matrix * update ci-testing.yml (#3322) * update ci-testing.yml * update greetings.yml * bring back os matrix * Enable direct `--weights URL` definition (#3373) * Enable direct `--weights URL` definition @KalenMike this PR will enable direct --weights URL definition. Example use case: ``` python train.py --weights https://storage.googleapis.com/bucket/dir/model.pt ``` * cleanup * bug fixes * weights = attempt_download(weights) * Update experimental.py * Update hubconf.py * return bug fix * comment mirror * min_bytes * Update tutorial.ipynb (#3368) add Open in Kaggle badge * `cv2.imread(img, -1)` for IMREAD_UNCHANGED (#3379) * Update datasets.py * comment Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * COCO evolution fix (#3388) * COCO evolution fix * cleanup * update print * print fix * Create `is_pip()` function (#3391) Returns `True` if file is part of pip package. Useful for contextual behavior modification. ```python def is_pip(): # Is file in a pip package? return 'site-packages' in Path(__file__).absolute().parts ``` * Revert "`cv2.imread(img, -1)` for IMREAD_UNCHANGED (#3379)" (#3395) This reverts commit 21a9607e00f1365b21d8c4bd81bdbf5fc0efea24. * Update FLOPs description (#3422) * Update README.md * Changing FLOPS to FLOPs. Co-authored-by: BuildTools <unconfigured@null.spigotmc.org> * Parse URL authentication (#3424) * Parse URL authentication * urllib.parse.unquote() * improved error handling * improved error handling * remove %3F * update check_file() * Add FLOPs title to table (#3453) * Suppress jit trace warning + graph once (#3454) * Suppress jit trace warning + graph once Suppress harmless jit trace warning on TensorBoard add_graph call. Also fix multiple add_graph() calls bug, now only on batch 0. * Update train.py * Update MixUp augmentation `alpha=beta=32.0` (#3455) Per VOC empirical results https://github.com/ultralytics/yolov5/issues/3380#issuecomment-853001307 by @developer0hye * Add `timeout()` class (#3460) * Add `timeout()` class * rearrange order * Faster HSV augmentation (#3462) remove datatype conversion process that can be skipped * Add `check_git_status()` 5 second timeout (#3464) * Add check_git_status() 5 second timeout This should prevent the SSH Git bug that we were discussing @KalenMike * cleanup * replace timeout with check_output built-in timeout * Improved `check_requirements()` offline-handling (#3466) Improve robustness of `check_requirements()` function to offline environments (do not attempt pip installs when offline). * Add `output_names` argument for ONNX export with dynamic axes (#3456) * Add output names & dynamic axes for onnx export Add output_names and dynamic_axes names for all outputs in torch.onnx.export. The first four outputs of the model will have names output0, output1, output2, output3 * use first output only + cleanup Co-authored-by: Samridha Shrestha <samridha.shrestha@g42.ai> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Revert FP16 `test.py` and `detect.py` inference to FP32 default (#3423) * fixed inference bug ,while use half precision * replace --use-half with --half * replace space and PEP8 in detect.py * PEP8 detect.py * update --half help comment * Update test.py * revert space Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Add additional links/resources to stale.yml message (#3467) * Update stale.yml * cleanup * Update stale.yml * reformat * Update stale.yml HUB URL (#3468) * Stale `github.actor` bug fix (#3483) * Explicit `model.eval()` call `if opt.train=False` (#3475) * call model.eval() when opt.train is False call model.eval() when opt.train is False * single-line if statement * cleanup Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * check_requirements() exclude `opencv-python` (#3495) Fix for 3rd party or contrib versions of installed OpenCV as in https://github.com/ultralytics/yolov5/issues/3494. * Earlier `assert` for cpu and half option (#3508) * early assert for cpu and half option early assert for cpu and half option * Modified comment Modified comment * Update tutorial.ipynb (#3510) * Reduce test.py results spacing (#3511) * Update README.md (#3512) * Update README.md Minor modifications * 850 width * Update greetings.yml revert greeting change as PRs will now merge to master. Co-authored-by: Piotr Skalski <SkalskiP@users.noreply.github.com> Co-authored-by: SkalskiP <piotr.skalski92@gmail.com> Co-authored-by: Peretz Cohen <pizzaz93@users.noreply.github.com> Co-authored-by: tudoulei <34886368+tudoulei@users.noreply.github.com> Co-authored-by: chocosaj <chocosaj@users.noreply.github.com> Co-authored-by: BuildTools <unconfigured@null.spigotmc.org> Co-authored-by: Yonghye Kwon <developer.0hye@gmail.com> Co-authored-by: Sam_S <SamSamhuns@users.noreply.github.com> Co-authored-by: Samridha Shrestha <samridha.shrestha@g42.ai> Co-authored-by: edificewang <609552430@qq.com>
3 anni fa
Merge `develop` branch into `master` (#3518) * update ci-testing.yml (#3322) * update ci-testing.yml * update greetings.yml * bring back os matrix * update ci-testing.yml (#3322) * update ci-testing.yml * update greetings.yml * bring back os matrix * Enable direct `--weights URL` definition (#3373) * Enable direct `--weights URL` definition @KalenMike this PR will enable direct --weights URL definition. Example use case: ``` python train.py --weights https://storage.googleapis.com/bucket/dir/model.pt ``` * cleanup * bug fixes * weights = attempt_download(weights) * Update experimental.py * Update hubconf.py * return bug fix * comment mirror * min_bytes * Update tutorial.ipynb (#3368) add Open in Kaggle badge * `cv2.imread(img, -1)` for IMREAD_UNCHANGED (#3379) * Update datasets.py * comment Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * COCO evolution fix (#3388) * COCO evolution fix * cleanup * update print * print fix * Create `is_pip()` function (#3391) Returns `True` if file is part of pip package. Useful for contextual behavior modification. ```python def is_pip(): # Is file in a pip package? return 'site-packages' in Path(__file__).absolute().parts ``` * Revert "`cv2.imread(img, -1)` for IMREAD_UNCHANGED (#3379)" (#3395) This reverts commit 21a9607e00f1365b21d8c4bd81bdbf5fc0efea24. * Update FLOPs description (#3422) * Update README.md * Changing FLOPS to FLOPs. Co-authored-by: BuildTools <unconfigured@null.spigotmc.org> * Parse URL authentication (#3424) * Parse URL authentication * urllib.parse.unquote() * improved error handling * improved error handling * remove %3F * update check_file() * Add FLOPs title to table (#3453) * Suppress jit trace warning + graph once (#3454) * Suppress jit trace warning + graph once Suppress harmless jit trace warning on TensorBoard add_graph call. Also fix multiple add_graph() calls bug, now only on batch 0. * Update train.py * Update MixUp augmentation `alpha=beta=32.0` (#3455) Per VOC empirical results https://github.com/ultralytics/yolov5/issues/3380#issuecomment-853001307 by @developer0hye * Add `timeout()` class (#3460) * Add `timeout()` class * rearrange order * Faster HSV augmentation (#3462) remove datatype conversion process that can be skipped * Add `check_git_status()` 5 second timeout (#3464) * Add check_git_status() 5 second timeout This should prevent the SSH Git bug that we were discussing @KalenMike * cleanup * replace timeout with check_output built-in timeout * Improved `check_requirements()` offline-handling (#3466) Improve robustness of `check_requirements()` function to offline environments (do not attempt pip installs when offline). * Add `output_names` argument for ONNX export with dynamic axes (#3456) * Add output names & dynamic axes for onnx export Add output_names and dynamic_axes names for all outputs in torch.onnx.export. The first four outputs of the model will have names output0, output1, output2, output3 * use first output only + cleanup Co-authored-by: Samridha Shrestha <samridha.shrestha@g42.ai> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Revert FP16 `test.py` and `detect.py` inference to FP32 default (#3423) * fixed inference bug ,while use half precision * replace --use-half with --half * replace space and PEP8 in detect.py * PEP8 detect.py * update --half help comment * Update test.py * revert space Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Add additional links/resources to stale.yml message (#3467) * Update stale.yml * cleanup * Update stale.yml * reformat * Update stale.yml HUB URL (#3468) * Stale `github.actor` bug fix (#3483) * Explicit `model.eval()` call `if opt.train=False` (#3475) * call model.eval() when opt.train is False call model.eval() when opt.train is False * single-line if statement * cleanup Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * check_requirements() exclude `opencv-python` (#3495) Fix for 3rd party or contrib versions of installed OpenCV as in https://github.com/ultralytics/yolov5/issues/3494. * Earlier `assert` for cpu and half option (#3508) * early assert for cpu and half option early assert for cpu and half option * Modified comment Modified comment * Update tutorial.ipynb (#3510) * Reduce test.py results spacing (#3511) * Update README.md (#3512) * Update README.md Minor modifications * 850 width * Update greetings.yml revert greeting change as PRs will now merge to master. Co-authored-by: Piotr Skalski <SkalskiP@users.noreply.github.com> Co-authored-by: SkalskiP <piotr.skalski92@gmail.com> Co-authored-by: Peretz Cohen <pizzaz93@users.noreply.github.com> Co-authored-by: tudoulei <34886368+tudoulei@users.noreply.github.com> Co-authored-by: chocosaj <chocosaj@users.noreply.github.com> Co-authored-by: BuildTools <unconfigured@null.spigotmc.org> Co-authored-by: Yonghye Kwon <developer.0hye@gmail.com> Co-authored-by: Sam_S <SamSamhuns@users.noreply.github.com> Co-authored-by: Samridha Shrestha <samridha.shrestha@g42.ai> Co-authored-by: edificewang <609552430@qq.com>
3 anni fa
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327
  1. # YOLOv5 PyTorch utils
  2. import datetime
  3. import logging
  4. import os
  5. import platform
  6. import subprocess
  7. import time
  8. from contextlib import contextmanager
  9. from copy import deepcopy
  10. from pathlib import Path
  11. import math
  12. import torch
  13. import torch.backends.cudnn as cudnn
  14. import torch.distributed as dist
  15. import torch.nn as nn
  16. import torch.nn.functional as F
  17. import torchvision
  18. try:
  19. import thop # for FLOPs computation
  20. except ImportError:
  21. thop = None
  22. LOGGER = logging.getLogger(__name__)
  23. @contextmanager
  24. def torch_distributed_zero_first(local_rank: int):
  25. """
  26. Decorator to make all processes in distributed training wait for each local_master to do something.
  27. """
  28. if local_rank not in [-1, 0]:
  29. dist.barrier()
  30. yield
  31. if local_rank == 0:
  32. dist.barrier()
  33. def init_torch_seeds(seed=0):
  34. # Speed-reproducibility tradeoff https://pytorch.org/docs/stable/notes/randomness.html
  35. torch.manual_seed(seed)
  36. if seed == 0: # slower, more reproducible
  37. cudnn.benchmark, cudnn.deterministic = False, True
  38. else: # faster, less reproducible
  39. cudnn.benchmark, cudnn.deterministic = True, False
  40. def date_modified(path=__file__):
  41. # return human-readable file modification date, i.e. '2021-3-26'
  42. t = datetime.datetime.fromtimestamp(Path(path).stat().st_mtime)
  43. return f'{t.year}-{t.month}-{t.day}'
  44. def git_describe(path=Path(__file__).parent): # path must be a directory
  45. # return human-readable git description, i.e. v5.0-5-g3e25f1e https://git-scm.com/docs/git-describe
  46. s = f'git -C {path} describe --tags --long --always'
  47. try:
  48. return subprocess.check_output(s, shell=True, stderr=subprocess.STDOUT).decode()[:-1]
  49. except subprocess.CalledProcessError as e:
  50. return '' # not a git repository
  51. def select_device(device='', batch_size=None):
  52. # device = 'cpu' or '0' or '0,1,2,3'
  53. s = f'YOLOv5 🚀 {git_describe() or date_modified()} torch {torch.__version__} ' # string
  54. device = str(device).strip().lower().replace('cuda:', '') # to string, 'cuda:0' to '0'
  55. cpu = device == 'cpu'
  56. if cpu:
  57. os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # force torch.cuda.is_available() = False
  58. elif device: # non-cpu device requested
  59. os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable
  60. assert torch.cuda.is_available(), f'CUDA unavailable, invalid device {device} requested' # check availability
  61. cuda = not cpu and torch.cuda.is_available()
  62. if cuda:
  63. devices = device.split(',') if device else '0' # range(torch.cuda.device_count()) # i.e. 0,1,6,7
  64. n = len(devices) # device count
  65. if n > 1 and batch_size: # check batch_size is divisible by device_count
  66. assert batch_size % n == 0, f'batch-size {batch_size} not multiple of GPU count {n}'
  67. space = ' ' * (len(s) + 1)
  68. for i, d in enumerate(devices):
  69. p = torch.cuda.get_device_properties(i)
  70. s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / 1024 ** 2}MB)\n" # bytes to MB
  71. else:
  72. s += 'CPU\n'
  73. LOGGER.info(s.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else s) # emoji-safe
  74. return torch.device('cuda:0' if cuda else 'cpu')
  75. def time_sync():
  76. # pytorch-accurate time
  77. if torch.cuda.is_available():
  78. torch.cuda.synchronize()
  79. return time.time()
  80. def profile(input, ops, n=10, device=None):
  81. # YOLOv5 speed/memory/FLOPs profiler
  82. #
  83. # Usage:
  84. # input = torch.randn(16, 3, 640, 640)
  85. # m1 = lambda x: x * torch.sigmoid(x)
  86. # m2 = nn.SiLU()
  87. # profile(input, [m1, m2], n=100) # profile over 100 iterations
  88. results = []
  89. logging.basicConfig(format="%(message)s", level=logging.INFO)
  90. device = device or select_device()
  91. print(f"{'Params':>12s}{'GFLOPs':>12s}{'GPU_mem (GB)':>14s}{'forward (ms)':>14s}{'backward (ms)':>14s}"
  92. f"{'input':>24s}{'output':>24s}")
  93. for x in input if isinstance(input, list) else [input]:
  94. x = x.to(device)
  95. x.requires_grad = True
  96. for m in ops if isinstance(ops, list) else [ops]:
  97. m = m.to(device) if hasattr(m, 'to') else m # device
  98. m = m.half() if hasattr(m, 'half') and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m
  99. tf, tb, t = 0., 0., [0., 0., 0.] # dt forward, backward
  100. try:
  101. flops = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 # GFLOPs
  102. except:
  103. flops = 0
  104. try:
  105. for _ in range(n):
  106. t[0] = time_sync()
  107. y = m(x)
  108. t[1] = time_sync()
  109. try:
  110. _ = (sum([yi.sum() for yi in y]) if isinstance(y, list) else y).sum().backward()
  111. t[2] = time_sync()
  112. except Exception as e: # no backward method
  113. print(e)
  114. t[2] = float('nan')
  115. tf += (t[1] - t[0]) * 1000 / n # ms per op forward
  116. tb += (t[2] - t[1]) * 1000 / n # ms per op backward
  117. mem = torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0 # (GB)
  118. s_in = tuple(x.shape) if isinstance(x, torch.Tensor) else 'list'
  119. s_out = tuple(y.shape) if isinstance(y, torch.Tensor) else 'list'
  120. p = sum(list(x.numel() for x in m.parameters())) if isinstance(m, nn.Module) else 0 # parameters
  121. print(f'{p:12}{flops:12.4g}{mem:>14.3f}{tf:14.4g}{tb:14.4g}{str(s_in):>24s}{str(s_out):>24s}')
  122. results.append([p, flops, mem, tf, tb, s_in, s_out])
  123. except Exception as e:
  124. print(e)
  125. results.append(None)
  126. torch.cuda.empty_cache()
  127. return results
  128. def is_parallel(model):
  129. # Returns True if model is of type DP or DDP
  130. return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel)
  131. def de_parallel(model):
  132. # De-parallelize a model: returns single-GPU model if model is of type DP or DDP
  133. return model.module if is_parallel(model) else model
  134. def intersect_dicts(da, db, exclude=()):
  135. # Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values
  136. return {k: v for k, v in da.items() if k in db and not any(x in k for x in exclude) and v.shape == db[k].shape}
  137. def initialize_weights(model):
  138. for m in model.modules():
  139. t = type(m)
  140. if t is nn.Conv2d:
  141. pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
  142. elif t is nn.BatchNorm2d:
  143. m.eps = 1e-3
  144. m.momentum = 0.03
  145. elif t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6]:
  146. m.inplace = True
  147. def find_modules(model, mclass=nn.Conv2d):
  148. # Finds layer indices matching module class 'mclass'
  149. return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)]
  150. def sparsity(model):
  151. # Return global model sparsity
  152. a, b = 0., 0.
  153. for p in model.parameters():
  154. a += p.numel()
  155. b += (p == 0).sum()
  156. return b / a
  157. def prune(model, amount=0.3):
  158. # Prune model to requested global sparsity
  159. import torch.nn.utils.prune as prune
  160. print('Pruning model... ', end='')
  161. for name, m in model.named_modules():
  162. if isinstance(m, nn.Conv2d):
  163. prune.l1_unstructured(m, name='weight', amount=amount) # prune
  164. prune.remove(m, 'weight') # make permanent
  165. print(' %.3g global sparsity' % sparsity(model))
  166. def fuse_conv_and_bn(conv, bn):
  167. # Fuse convolution and batchnorm layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/
  168. fusedconv = nn.Conv2d(conv.in_channels,
  169. conv.out_channels,
  170. kernel_size=conv.kernel_size,
  171. stride=conv.stride,
  172. padding=conv.padding,
  173. groups=conv.groups,
  174. bias=True).requires_grad_(False).to(conv.weight.device)
  175. # prepare filters
  176. w_conv = conv.weight.clone().view(conv.out_channels, -1)
  177. w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
  178. fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.shape))
  179. # prepare spatial bias
  180. b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias
  181. b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
  182. fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)
  183. return fusedconv
  184. def model_info(model, verbose=False, img_size=640):
  185. # Model information. img_size may be int or list, i.e. img_size=640 or img_size=[640, 320]
  186. n_p = sum(x.numel() for x in model.parameters()) # number parameters
  187. n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients
  188. if verbose:
  189. print('%5s %40s %9s %12s %20s %10s %10s' % ('layer', 'name', 'gradient', 'parameters', 'shape', 'mu', 'sigma'))
  190. for i, (name, p) in enumerate(model.named_parameters()):
  191. name = name.replace('module_list.', '')
  192. print('%5g %40s %9s %12g %20s %10.3g %10.3g' %
  193. (i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std()))
  194. try: # FLOPs
  195. from thop import profile
  196. stride = max(int(model.stride.max()), 32) if hasattr(model, 'stride') else 32
  197. img = torch.zeros((1, model.yaml.get('ch', 3), stride, stride), device=next(model.parameters()).device) # input
  198. flops = profile(deepcopy(model), inputs=(img,), verbose=False)[0] / 1E9 * 2 # stride GFLOPs
  199. img_size = img_size if isinstance(img_size, list) else [img_size, img_size] # expand if int/float
  200. fs = ', %.1f GFLOPs' % (flops * img_size[0] / stride * img_size[1] / stride) # 640x640 GFLOPs
  201. except (ImportError, Exception):
  202. fs = ''
  203. LOGGER.info(f"Model Summary: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}")
  204. def load_classifier(name='resnet101', n=2):
  205. # Loads a pretrained model reshaped to n-class output
  206. model = torchvision.models.__dict__[name](pretrained=True)
  207. # ResNet model properties
  208. # input_size = [3, 224, 224]
  209. # input_space = 'RGB'
  210. # input_range = [0, 1]
  211. # mean = [0.485, 0.456, 0.406]
  212. # std = [0.229, 0.224, 0.225]
  213. # Reshape output to n classes
  214. filters = model.fc.weight.shape[1]
  215. model.fc.bias = nn.Parameter(torch.zeros(n), requires_grad=True)
  216. model.fc.weight = nn.Parameter(torch.zeros(n, filters), requires_grad=True)
  217. model.fc.out_features = n
  218. return model
  219. def scale_img(img, ratio=1.0, same_shape=False, gs=32): # img(16,3,256,416)
  220. # scales img(bs,3,y,x) by ratio constrained to gs-multiple
  221. if ratio == 1.0:
  222. return img
  223. else:
  224. h, w = img.shape[2:]
  225. s = (int(h * ratio), int(w * ratio)) # new size
  226. img = F.interpolate(img, size=s, mode='bilinear', align_corners=False) # resize
  227. if not same_shape: # pad/crop img
  228. h, w = [math.ceil(x * ratio / gs) * gs for x in (h, w)]
  229. return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean
  230. def copy_attr(a, b, include=(), exclude=()):
  231. # Copy attributes from b to a, options to only include [...] and to exclude [...]
  232. for k, v in b.__dict__.items():
  233. if (len(include) and k not in include) or k.startswith('_') or k in exclude:
  234. continue
  235. else:
  236. setattr(a, k, v)
  237. class ModelEMA:
  238. """ Model Exponential Moving Average from https://github.com/rwightman/pytorch-image-models
  239. Keep a moving average of everything in the model state_dict (parameters and buffers).
  240. This is intended to allow functionality like
  241. https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
  242. A smoothed version of the weights is necessary for some training schemes to perform well.
  243. This class is sensitive where it is initialized in the sequence of model init,
  244. GPU assignment and distributed training wrappers.
  245. """
  246. def __init__(self, model, decay=0.9999, updates=0):
  247. # Create EMA
  248. self.ema = deepcopy(model.module if is_parallel(model) else model).eval() # FP32 EMA
  249. # if next(model.parameters()).device.type != 'cpu':
  250. # self.ema.half() # FP16 EMA
  251. self.updates = updates # number of EMA updates
  252. self.decay = lambda x: decay * (1 - math.exp(-x / 2000)) # decay exponential ramp (to help early epochs)
  253. for p in self.ema.parameters():
  254. p.requires_grad_(False)
  255. def update(self, model):
  256. # Update EMA parameters
  257. with torch.no_grad():
  258. self.updates += 1
  259. d = self.decay(self.updates)
  260. msd = model.module.state_dict() if is_parallel(model) else model.state_dict() # model state_dict
  261. for k, v in self.ema.state_dict().items():
  262. if v.dtype.is_floating_point:
  263. v *= d
  264. v += (1. - d) * msd[k].detach()
  265. def update_attr(self, model, include=(), exclude=('process_group', 'reducer')):
  266. # Update EMA attributes
  267. copy_attr(self.ema, model, include, exclude)