You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

README.md 11KB

4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154
  1. <a href="https://apps.apple.com/app/id1452689527" target="_blank">
  2. <img src="https://user-images.githubusercontent.com/26833433/98699617-a1595a00-2377-11eb-8145-fc674eb9b1a7.jpg" width="1000"></a>
  3. &nbsp
  4. ![CI CPU testing](https://github.com/ultralytics/yolov5/workflows/CI%20CPU%20testing/badge.svg)
  5. This repository represents Ultralytics open-source research into future object detection methods, and incorporates our lessons learned and best practices evolved over training thousands of models on custom client datasets with our previous YOLO repository https://github.com/ultralytics/yolov3. **All code and models are under active development, and are subject to modification or deletion without notice.** Use at your own risk.
  6. <img src="https://user-images.githubusercontent.com/26833433/90187293-6773ba00-dd6e-11ea-8f90-cd94afc0427f.png" width="1000">** GPU Speed measures end-to-end time per image averaged over 5000 COCO val2017 images using a V100 GPU with batch size 32, and includes image preprocessing, PyTorch FP16 inference, postprocessing and NMS. EfficientDet data from [google/automl](https://github.com/google/automl) at batch size 8.
  7. - **August 13, 2020**: [v3.0 release](https://github.com/ultralytics/yolov5/releases/tag/v3.0): nn.Hardswish() activations, data autodownload, native AMP.
  8. - **July 23, 2020**: [v2.0 release](https://github.com/ultralytics/yolov5/releases/tag/v2.0): improved model definition, training and mAP.
  9. - **June 22, 2020**: [PANet](https://arxiv.org/abs/1803.01534) updates: new heads, reduced parameters, improved speed and mAP [364fcfd](https://github.com/ultralytics/yolov5/commit/364fcfd7dba53f46edd4f04c037a039c0a287972).
  10. - **June 19, 2020**: [FP16](https://pytorch.org/docs/stable/nn.html#torch.nn.Module.half) as new default for smaller checkpoints and faster inference [d4c6674](https://github.com/ultralytics/yolov5/commit/d4c6674c98e19df4c40e33a777610a18d1961145).
  11. - **June 9, 2020**: [CSP](https://github.com/WongKinYiu/CrossStagePartialNetworks) updates: improved speed, size, and accuracy (credit to @WongKinYiu for CSP).
  12. - **May 27, 2020**: Public release. YOLOv5 models are SOTA among all known YOLO implementations.
  13. - **April 1, 2020**: Start development of future compound-scaled [YOLOv3](https://github.com/ultralytics/yolov3)/[YOLOv4](https://github.com/AlexeyAB/darknet)-based PyTorch models.
  14. ## Pretrained Checkpoints
  15. | Model | AP<sup>val</sup> | AP<sup>test</sup> | AP<sub>50</sub> | Speed<sub>GPU</sub> | FPS<sub>GPU</sub> || params | FLOPS |
  16. |---------- |------ |------ |------ | -------- | ------| ------ |------ | :------: |
  17. | [YOLOv5s](https://github.com/ultralytics/yolov5/releases) | 37.0 | 37.0 | 56.2 | **2.4ms** | **416** || 7.5M | 13.2B
  18. | [YOLOv5m](https://github.com/ultralytics/yolov5/releases) | 44.3 | 44.3 | 63.2 | 3.4ms | 294 || 21.8M | 39.4B
  19. | [YOLOv5l](https://github.com/ultralytics/yolov5/releases) | 47.7 | 47.7 | 66.5 | 4.4ms | 227 || 47.8M | 88.1B
  20. | [YOLOv5x](https://github.com/ultralytics/yolov5/releases) | **49.2** | **49.2** | **67.7** | 6.9ms | 145 || 89.0M | 166.4B
  21. | | | | | | || |
  22. | [YOLOv5x](https://github.com/ultralytics/yolov5/releases) + TTA|**50.8**| **50.8** | **68.9** | 25.5ms | 39 || 89.0M | 354.3B
  23. | | | | | | || |
  24. | [YOLOv3-SPP](https://github.com/ultralytics/yolov5/releases) | 45.6 | 45.5 | 65.2 | 4.5ms | 222 || 63.0M | 118.0B
  25. ** AP<sup>test</sup> denotes COCO [test-dev2017](http://cocodataset.org/#upload) server results, all other AP results in the table denote val2017 accuracy.
  26. ** All AP numbers are for single-model single-scale without ensemble or test-time augmentation. **Reproduce** by `python test.py --data coco.yaml --img 640 --conf 0.001`
  27. ** Speed<sub>GPU</sub> measures end-to-end time per image averaged over 5000 COCO val2017 images using a GCP [n1-standard-16](https://cloud.google.com/compute/docs/machine-types#n1_standard_machine_types) instance with one V100 GPU, and includes image preprocessing, PyTorch FP16 image inference at --batch-size 32 --img-size 640, postprocessing and NMS. Average NMS time included in this chart is 1-2ms/img. **Reproduce** by `python test.py --data coco.yaml --img 640 --conf 0.1`
  28. ** All checkpoints are trained to 300 epochs with default settings and hyperparameters (no autoaugmentation).
  29. ** Test Time Augmentation ([TTA](https://github.com/ultralytics/yolov5/issues/303)) runs at 3 image sizes. **Reproduce** by `python test.py --data coco.yaml --img 832 --augment`
  30. ## Requirements
  31. Python 3.8 or later with all [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) dependencies installed, including `torch>=1.6`. To install run:
  32. ```bash
  33. $ pip install -r requirements.txt
  34. ```
  35. ## Tutorials
  36. * [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data)&nbsp; 🚀 RECOMMENDED
  37. * [Weights & Biases Logging](https://github.com/ultralytics/yolov5/issues/1289)&nbsp; 🌟 NEW
  38. * [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475)
  39. * [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36)&nbsp; ⭐ NEW
  40. * [ONNX and TorchScript Export](https://github.com/ultralytics/yolov5/issues/251)
  41. * [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303)
  42. * [Model Ensembling](https://github.com/ultralytics/yolov5/issues/318)
  43. * [Model Pruning/Sparsity](https://github.com/ultralytics/yolov5/issues/304)
  44. * [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607)
  45. * [Transfer Learning with Frozen Layers](https://github.com/ultralytics/yolov5/issues/1314)&nbsp; ⭐ NEW
  46. * [TensorRT Deployment](https://github.com/wang-xinyu/tensorrtx)
  47. ## Environments
  48. YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):
  49. - **Google Colab Notebook** with free GPU: <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
  50. - **Kaggle Notebook** with free GPU: [https://www.kaggle.com/ultralytics/yolov5](https://www.kaggle.com/ultralytics/yolov5)
  51. - **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)
  52. - **Docker Image** https://hub.docker.com/r/ultralytics/yolov5. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) ![Docker Pulls](https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker)
  53. ## Inference
  54. detect.py runs inference on a variety of sources, downloading models automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`.
  55. ```bash
  56. $ python detect.py --source 0 # webcam
  57. file.jpg # image
  58. file.mp4 # video
  59. path/ # directory
  60. path/*.jpg # glob
  61. rtsp://170.93.143.139/rtplive/470011e600ef003a004ee33696235daa # rtsp stream
  62. rtmp://192.168.1.105/live/test # rtmp stream
  63. http://112.50.243.8/PLTV/88888888/224/3221225900/1.m3u8 # http stream
  64. ```
  65. To run inference on example images in `data/images`:
  66. ```bash
  67. $ python detect.py --source data/images --weights yolov5s.pt --conf 0.25
  68. Namespace(agnostic_nms=False, augment=False, classes=None, conf_thres=0.25, device='', img_size=640, iou_thres=0.45, output='runs/detect', save_conf=False, save_txt=False, source='data/images', update=False, view_img=False, weights='yolov5s.pt')
  69. Using torch 1.7.0+cu101 CUDA:0 (Tesla V100-SXM2-16GB, 16130MB)
  70. Downloading https://github.com/ultralytics/yolov5/releases/download/v3.0/yolov5s.pt to yolov5s.pt... 100%|██████████████| 14.5M/14.5M [00:00<00:00, 21.3MB/s]
  71. Fusing layers...
  72. Model Summary: 140 layers, 7.45958e+06 parameters, 0 gradients
  73. image 1/2 data/images/bus.jpg: 640x480 4 persons, 1 buss, 1 skateboards, Done. (0.013s)
  74. image 2/2 data/images/zidane.jpg: 384x640 2 persons, 2 ties, Done. (0.013s)
  75. Results saved to runs/detect/exp
  76. Done. (0.124s)
  77. ```
  78. <img src="https://user-images.githubusercontent.com/26833433/97107365-685a8d80-16c7-11eb-8c2e-83aac701d8b9.jpeg" width="500">
  79. ### PyTorch Hub
  80. To run **batched inference** with YOLOv5 and [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36):
  81. ```python
  82. import torch
  83. from PIL import Image
  84. # Model
  85. model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True).fuse().eval() # yolov5s.pt
  86. model = model.autoshape() # for autoshaping of PIL/cv2/np inputs and NMS
  87. # Images
  88. img1 = Image.open('zidane.jpg')
  89. img2 = Image.open('bus.jpg')
  90. imgs = [img1, img2] # batched list of images
  91. # Inference
  92. prediction = model(imgs, size=640) # includes NMS
  93. ```
  94. ## Training
  95. Download [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh) and run command below. Training times for YOLOv5s/m/l/x are 2/4/6/8 days on a single V100 (multi-GPU times faster). Use the largest `--batch-size` your GPU allows (batch sizes shown for 16 GB devices).
  96. ```bash
  97. $ python train.py --data coco.yaml --cfg yolov5s.yaml --weights '' --batch-size 64
  98. yolov5m 40
  99. yolov5l 24
  100. yolov5x 16
  101. ```
  102. <img src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png" width="900">
  103. ## Citation
  104. [![DOI](https://zenodo.org/badge/264818686.svg)](https://zenodo.org/badge/latestdoi/264818686)
  105. ## About Us
  106. Ultralytics is a U.S.-based particle physics and AI startup with over 6 years of expertise supporting government, academic and business clients. We offer a wide range of vision AI services, spanning from simple expert advice up to delivery of fully customized, end-to-end production solutions, including:
  107. - **Cloud-based AI** systems operating on **hundreds of HD video streams in realtime.**
  108. - **Edge AI** integrated into custom iOS and Android apps for realtime **30 FPS video inference.**
  109. - **Custom data training**, hyperparameter evolution, and model exportation to any destination.
  110. For business inquiries and professional support requests please visit us at https://www.ultralytics.com.
  111. ## Contact
  112. **Issues should be raised directly in the repository.** For business inquiries or professional support requests please visit https://www.ultralytics.com or email Glenn Jocher at glenn.jocher@ultralytics.com.