Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152
  1. # SKU-110K retail items dataset https://github.com/eg4000/SKU110K_CVPR19
  2. # Train command: python train.py --data SKU-110K.yaml
  3. # Default dataset location is next to YOLOv5:
  4. # /parent_folder
  5. # /datasets/SKU-110K
  6. # /yolov5
  7. # train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]
  8. train: ../datasets/SKU-110K/train.txt # 8219 images
  9. val: ../datasets/SKU-110K/val.txt # 588 images
  10. test: ../datasets/SKU-110K/test.txt # 2936 images
  11. # number of classes
  12. nc: 1
  13. # class names
  14. names: [ 'object' ]
  15. # download command/URL (optional) --------------------------------------------------------------------------------------
  16. download: |
  17. import shutil
  18. from tqdm import tqdm
  19. from utils.general import np, pd, Path, download, xyxy2xywh
  20. # Download
  21. datasets = Path('../datasets') # download directory
  22. urls = ['http://trax-geometry.s3.amazonaws.com/cvpr_challenge/SKU110K_fixed.tar.gz']
  23. download(urls, dir=datasets, delete=False)
  24. # Rename directories
  25. dir = (datasets / 'SKU-110K')
  26. if dir.exists():
  27. shutil.rmtree(dir)
  28. (datasets / 'SKU110K_fixed').rename(dir) # rename dir
  29. (dir / 'labels').mkdir(parents=True, exist_ok=True) # create labels dir
  30. # Convert labels
  31. names = 'image', 'x1', 'y1', 'x2', 'y2', 'class', 'image_width', 'image_height' # column names
  32. for d in 'annotations_train.csv', 'annotations_val.csv', 'annotations_test.csv':
  33. x = pd.read_csv(dir / 'annotations' / d, names=names).values # annotations
  34. images, unique_images = x[:, 0], np.unique(x[:, 0])
  35. with open((dir / d).with_suffix('.txt').__str__().replace('annotations_', ''), 'w') as f:
  36. f.writelines(f'./images/{s}\n' for s in unique_images)
  37. for im in tqdm(unique_images, desc=f'Converting {dir / d}'):
  38. cls = 0 # single-class dataset
  39. with open((dir / 'labels' / im).with_suffix('.txt'), 'a') as f:
  40. for r in x[images == im]:
  41. w, h = r[6], r[7] # image width, height
  42. xywh = xyxy2xywh(np.array([[r[1] / w, r[2] / h, r[3] / w, r[4] / h]]))[0] # instance
  43. f.write(f"{cls} {xywh[0]:.5f} {xywh[1]:.5f} {xywh[2]:.5f} {xywh[3]:.5f}\n") # write label