Nie możesz wybrać więcej, niż 25 tematów Tematy muszą się zaczynać od litery lub cyfry, mogą zawierać myślniki ('-') i mogą mieć do 35 znaków.

get_voc.sh 4.3KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137
  1. #!/bin/bash
  2. # PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC/
  3. # Download command: bash data/scripts/get_voc.sh
  4. # Train command: python train.py --data voc.yaml
  5. # Default dataset location is next to /yolov5:
  6. # /parent_folder
  7. # /VOC
  8. # /yolov5
  9. start=$(date +%s)
  10. mkdir -p ../tmp
  11. cd ../tmp/
  12. # Download/unzip images and labels
  13. d='.' # unzip directory
  14. url=https://github.com/ultralytics/yolov5/releases/download/v1.0/
  15. f1=VOCtrainval_06-Nov-2007.zip # 446MB, 5012 images
  16. f2=VOCtest_06-Nov-2007.zip # 438MB, 4953 images
  17. f3=VOCtrainval_11-May-2012.zip # 1.95GB, 17126 images
  18. for f in $f1 $f2 $f3; do
  19. echo 'Downloading' $url$f ' ...' && curl -L $url$f -o $f && unzip -q $f -d $d && rm $f # download, unzip, remove
  20. done
  21. end=$(date +%s)
  22. runtime=$((end - start))
  23. echo "Completed in" $runtime "seconds"
  24. echo "Splitting dataset..."
  25. python3 - "$@" <<END
  26. import xml.etree.ElementTree as ET
  27. import pickle
  28. import os
  29. from os import listdir, getcwd
  30. from os.path import join
  31. sets=[('2012', 'train'), ('2012', 'val'), ('2007', 'train'), ('2007', 'val'), ('2007', 'test')]
  32. classes = ["aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]
  33. def convert(size, box):
  34. dw = 1./(size[0])
  35. dh = 1./(size[1])
  36. x = (box[0] + box[1])/2.0 - 1
  37. y = (box[2] + box[3])/2.0 - 1
  38. w = box[1] - box[0]
  39. h = box[3] - box[2]
  40. x = x*dw
  41. w = w*dw
  42. y = y*dh
  43. h = h*dh
  44. return (x,y,w,h)
  45. def convert_annotation(year, image_id):
  46. in_file = open('VOCdevkit/VOC%s/Annotations/%s.xml'%(year, image_id))
  47. out_file = open('VOCdevkit/VOC%s/labels/%s.txt'%(year, image_id), 'w')
  48. tree=ET.parse(in_file)
  49. root = tree.getroot()
  50. size = root.find('size')
  51. w = int(size.find('width').text)
  52. h = int(size.find('height').text)
  53. for obj in root.iter('object'):
  54. difficult = obj.find('difficult').text
  55. cls = obj.find('name').text
  56. if cls not in classes or int(difficult)==1:
  57. continue
  58. cls_id = classes.index(cls)
  59. xmlbox = obj.find('bndbox')
  60. b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))
  61. bb = convert((w,h), b)
  62. out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
  63. wd = getcwd()
  64. for year, image_set in sets:
  65. if not os.path.exists('VOCdevkit/VOC%s/labels/'%(year)):
  66. os.makedirs('VOCdevkit/VOC%s/labels/'%(year))
  67. image_ids = open('VOCdevkit/VOC%s/ImageSets/Main/%s.txt'%(year, image_set)).read().strip().split()
  68. list_file = open('%s_%s.txt'%(year, image_set), 'w')
  69. for image_id in image_ids:
  70. list_file.write('%s/VOCdevkit/VOC%s/JPEGImages/%s.jpg\n'%(wd, year, image_id))
  71. convert_annotation(year, image_id)
  72. list_file.close()
  73. END
  74. cat 2007_train.txt 2007_val.txt 2012_train.txt 2012_val.txt >train.txt
  75. cat 2007_train.txt 2007_val.txt 2007_test.txt 2012_train.txt 2012_val.txt >train.all.txt
  76. python3 - "$@" <<END
  77. import shutil
  78. import os
  79. os.system('mkdir ../VOC/')
  80. os.system('mkdir ../VOC/images')
  81. os.system('mkdir ../VOC/images/train')
  82. os.system('mkdir ../VOC/images/val')
  83. os.system('mkdir ../VOC/labels')
  84. os.system('mkdir ../VOC/labels/train')
  85. os.system('mkdir ../VOC/labels/val')
  86. import os
  87. print(os.path.exists('../tmp/train.txt'))
  88. f = open('../tmp/train.txt', 'r')
  89. lines = f.readlines()
  90. for line in lines:
  91. line = "/".join(line.split('/')[-5:]).strip()
  92. if (os.path.exists("../" + line)):
  93. os.system("cp ../"+ line + " ../VOC/images/train")
  94. line = line.replace('JPEGImages', 'labels')
  95. line = line.replace('jpg', 'txt')
  96. if (os.path.exists("../" + line)):
  97. os.system("cp ../"+ line + " ../VOC/labels/train")
  98. print(os.path.exists('../tmp/2007_test.txt'))
  99. f = open('../tmp/2007_test.txt', 'r')
  100. lines = f.readlines()
  101. for line in lines:
  102. line = "/".join(line.split('/')[-5:]).strip()
  103. if (os.path.exists("../" + line)):
  104. os.system("cp ../"+ line + " ../VOC/images/val")
  105. line = line.replace('JPEGImages', 'labels')
  106. line = line.replace('jpg', 'txt')
  107. if (os.path.exists("../" + line)):
  108. os.system("cp ../"+ line + " ../VOC/labels/val")
  109. END
  110. rm -rf ../tmp # remove temporary directory
  111. echo "VOC download done."