You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

README.md 15KB

4 vuotta sitten
4 vuotta sitten
4 vuotta sitten
4 vuotta sitten
4 vuotta sitten
4 vuotta sitten
4 vuotta sitten
4 vuotta sitten
4 vuotta sitten
4 vuotta sitten
4 vuotta sitten
4 vuotta sitten
4 vuotta sitten
4 vuotta sitten
4 vuotta sitten
4 vuotta sitten
4 vuotta sitten
4 vuotta sitten
4 vuotta sitten
4 vuotta sitten
4 vuotta sitten
4 vuotta sitten
4 vuotta sitten
4 vuotta sitten
4 vuotta sitten
4 vuotta sitten
4 vuotta sitten
4 vuotta sitten
4 vuotta sitten
4 vuotta sitten
4 vuotta sitten
4 vuotta sitten
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304
  1. <div align="center">
  2. <p>
  3. <a align="left" href="https://ultralytics.com/yolov5" target="_blank">
  4. <img width="850" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/splash.jpg"></a>
  5. </p>
  6. <br>
  7. <div>
  8. <a href="https://github.com/ultralytics/yolov5/actions"><img src="https://github.com/ultralytics/yolov5/workflows/CI%20CPU%20testing/badge.svg" alt="CI CPU testing"></a>
  9. <a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv5 Citation"></a>
  10. <a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
  11. <br>
  12. <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
  13. <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
  14. <a href="https://join.slack.com/t/ultralytics/shared_invite/zt-w29ei8bp-jczz7QYUmDtgo6r6KcMIAg"><img src="https://img.shields.io/badge/Slack-Join_Forum-blue.svg?logo=slack" alt="Join Forum"></a>
  15. </div>
  16. <br>
  17. <p>
  18. YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset, and represents <a href="https://ultralytics.com">Ultralytics</a>
  19. open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.
  20. </p>
  21. <div align="center">
  22. <a href="https://github.com/ultralytics">
  23. <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-github.png" width="2%"/>
  24. </a>
  25. <img width="2%" />
  26. <a href="https://www.linkedin.com/company/ultralytics">
  27. <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-linkedin.png" width="2%"/>
  28. </a>
  29. <img width="2%" />
  30. <a href="https://twitter.com/ultralytics">
  31. <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-twitter.png" width="2%"/>
  32. </a>
  33. <img width="2%" />
  34. <a href="https://www.producthunt.com/@glenn_jocher">
  35. <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-producthunt.png" width="2%"/>
  36. </a>
  37. <img width="2%" />
  38. <a href="https://youtube.com/ultralytics">
  39. <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-youtube.png" width="2%"/>
  40. </a>
  41. <img width="2%" />
  42. <a href="https://www.facebook.com/ultralytics">
  43. <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-facebook.png" width="2%"/>
  44. </a>
  45. <img width="2%" />
  46. <a href="https://www.instagram.com/ultralytics/">
  47. <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-instagram.png" width="2%"/>
  48. </a>
  49. </div>
  50. <!--
  51. <a align="center" href="https://ultralytics.com/yolov5" target="_blank">
  52. <img width="800" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/banner-api.png"></a>
  53. -->
  54. </div>
  55. ## <div align="center">Documentation</div>
  56. See the [YOLOv5 Docs](https://docs.ultralytics.com) for full documentation on training, testing and deployment.
  57. ## <div align="center">Quick Start Examples</div>
  58. <details open>
  59. <summary>Install</summary>
  60. Clone repo and install [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) in a
  61. [**Python>=3.7.0**](https://www.python.org/) environment, including
  62. [**PyTorch>=1.7**](https://pytorch.org/get-started/locally/).
  63. ```bash
  64. git clone https://github.com/ultralytics/yolov5 # clone
  65. cd yolov5
  66. pip install -r requirements.txt # install
  67. ```
  68. </details>
  69. <details open>
  70. <summary>Inference</summary>
  71. Inference with YOLOv5 and [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36)
  72. . [Models](https://github.com/ultralytics/yolov5/tree/master/models) download automatically from the latest
  73. YOLOv5 [release](https://github.com/ultralytics/yolov5/releases).
  74. ```python
  75. import torch
  76. # Model
  77. model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # or yolov5m, yolov5l, yolov5x, custom
  78. # Images
  79. img = 'https://ultralytics.com/images/zidane.jpg' # or file, Path, PIL, OpenCV, numpy, list
  80. # Inference
  81. results = model(img)
  82. # Results
  83. results.print() # or .show(), .save(), .crop(), .pandas(), etc.
  84. ```
  85. </details>
  86. <details>
  87. <summary>Inference with detect.py</summary>
  88. `detect.py` runs inference on a variety of sources, downloading [models](https://github.com/ultralytics/yolov5/tree/master/models) automatically from
  89. the latest YOLOv5 [release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`.
  90. ```bash
  91. python detect.py --source 0 # webcam
  92. img.jpg # image
  93. vid.mp4 # video
  94. path/ # directory
  95. path/*.jpg # glob
  96. 'https://youtu.be/Zgi9g1ksQHc' # YouTube
  97. 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
  98. ```
  99. </details>
  100. <details>
  101. <summary>Training</summary>
  102. The commands below reproduce YOLOv5 [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh)
  103. results. [Models](https://github.com/ultralytics/yolov5/tree/master/models)
  104. and [datasets](https://github.com/ultralytics/yolov5/tree/master/data) download automatically from the latest
  105. YOLOv5 [release](https://github.com/ultralytics/yolov5/releases). Training times for YOLOv5n/s/m/l/x are
  106. 1/2/4/6/8 days on a V100 GPU ([Multi-GPU](https://github.com/ultralytics/yolov5/issues/475) times faster). Use the
  107. largest `--batch-size` possible, or pass `--batch-size -1` for
  108. YOLOv5 [AutoBatch](https://github.com/ultralytics/yolov5/pull/5092). Batch sizes shown for V100-16GB.
  109. ```bash
  110. python train.py --data coco.yaml --cfg yolov5n.yaml --weights '' --batch-size 128
  111. yolov5s 64
  112. yolov5m 40
  113. yolov5l 24
  114. yolov5x 16
  115. ```
  116. <img width="800" src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png">
  117. </details>
  118. <details open>
  119. <summary>Tutorials</summary>
  120. * [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data)&nbsp; 🚀 RECOMMENDED
  121. * [Tips for Best Training Results](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results)&nbsp; ☘️
  122. RECOMMENDED
  123. * [Weights & Biases Logging](https://github.com/ultralytics/yolov5/issues/1289)&nbsp; 🌟 NEW
  124. * [Roboflow for Datasets, Labeling, and Active Learning](https://github.com/ultralytics/yolov5/issues/4975)&nbsp; 🌟 NEW
  125. * [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475)
  126. * [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36)&nbsp; ⭐ NEW
  127. * [TFLite, ONNX, CoreML, TensorRT Export](https://github.com/ultralytics/yolov5/issues/251) 🚀
  128. * [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303)
  129. * [Model Ensembling](https://github.com/ultralytics/yolov5/issues/318)
  130. * [Model Pruning/Sparsity](https://github.com/ultralytics/yolov5/issues/304)
  131. * [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607)
  132. * [Transfer Learning with Frozen Layers](https://github.com/ultralytics/yolov5/issues/1314)&nbsp; ⭐ NEW
  133. * [TensorRT Deployment](https://github.com/wang-xinyu/tensorrtx)
  134. </details>
  135. ## <div align="center">Environments</div>
  136. Get started in seconds with our verified environments. Click each icon below for details.
  137. <div align="center">
  138. <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb">
  139. <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-colab-small.png" width="15%"/>
  140. </a>
  141. <a href="https://www.kaggle.com/ultralytics/yolov5">
  142. <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-kaggle-small.png" width="15%"/>
  143. </a>
  144. <a href="https://hub.docker.com/r/ultralytics/yolov5">
  145. <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-docker-small.png" width="15%"/>
  146. </a>
  147. <a href="https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart">
  148. <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-aws-small.png" width="15%"/>
  149. </a>
  150. <a href="https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart">
  151. <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-gcp-small.png" width="15%"/>
  152. </a>
  153. </div>
  154. ## <div align="center">Integrations</div>
  155. <div align="center">
  156. <a href="https://wandb.ai/site?utm_campaign=repo_yolo_readme">
  157. <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-wb-long.png" width="49%"/>
  158. </a>
  159. <a href="https://roboflow.com/?ref=ultralytics">
  160. <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-roboflow-long.png" width="49%"/>
  161. </a>
  162. </div>
  163. |Weights and Biases|Roboflow ⭐ NEW|
  164. |:-:|:-:|
  165. |Automatically track and visualize all your YOLOv5 training runs in the cloud with [Weights & Biases](https://wandb.ai/site?utm_campaign=repo_yolo_readme)|Label and export your custom datasets directly to YOLOv5 for training with [Roboflow](https://roboflow.com/?ref=ultralytics) |
  166. <!-- ## <div align="center">Compete and Win</div>
  167. We are super excited about our first-ever Ultralytics YOLOv5 🚀 EXPORT Competition with **$10,000** in cash prizes!
  168. <p align="center">
  169. <a href="https://github.com/ultralytics/yolov5/discussions/3213">
  170. <img width="850" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/banner-export-competition.png"></a>
  171. </p> -->
  172. ## <div align="center">Why YOLOv5</div>
  173. <p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/155040763-93c22a27-347c-4e3c-847a-8094621d3f4e.png"></p>
  174. <details>
  175. <summary>YOLOv5-P5 640 Figure (click to expand)</summary>
  176. <p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/155040757-ce0934a3-06a6-43dc-a979-2edbbd69ea0e.png"></p>
  177. </details>
  178. <details>
  179. <summary>Figure Notes (click to expand)</summary>
  180. * **COCO AP val** denotes mAP@0.5:0.95 metric measured on the 5000-image [COCO val2017](http://cocodataset.org) dataset over various inference sizes from 256 to 1536.
  181. * **GPU Speed** measures average inference time per image on [COCO val2017](http://cocodataset.org) dataset using a [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) V100 instance at batch-size 32.
  182. * **EfficientDet** data from [google/automl](https://github.com/google/automl) at batch size 8.
  183. * **Reproduce** by `python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n6.pt yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt`
  184. </details>
  185. ### Pretrained Checkpoints
  186. [assets]: https://github.com/ultralytics/yolov5/releases
  187. [TTA]: https://github.com/ultralytics/yolov5/issues/303
  188. |Model |size<br><sup>(pixels) |mAP<sup>val<br>0.5:0.95 |mAP<sup>val<br>0.5 |Speed<br><sup>CPU b1<br>(ms) |Speed<br><sup>V100 b1<br>(ms) |Speed<br><sup>V100 b32<br>(ms) |params<br><sup>(M) |FLOPs<br><sup>@640 (B)
  189. |--- |--- |--- |--- |--- |--- |--- |--- |---
  190. |[YOLOv5n][assets] |640 |28.0 |45.7 |**45** |**6.3**|**0.6**|**1.9**|**4.5**
  191. |[YOLOv5s][assets] |640 |37.4 |56.8 |98 |6.4 |0.9 |7.2 |16.5
  192. |[YOLOv5m][assets] |640 |45.4 |64.1 |224 |8.2 |1.7 |21.2 |49.0
  193. |[YOLOv5l][assets] |640 |49.0 |67.3 |430 |10.1 |2.7 |46.5 |109.1
  194. |[YOLOv5x][assets] |640 |50.7 |68.9 |766 |12.1 |4.8 |86.7 |205.7
  195. | | | | | | | | |
  196. |[YOLOv5n6][assets] |1280 |36.0 |54.4 |153 |8.1 |2.1 |3.2 |4.6
  197. |[YOLOv5s6][assets] |1280 |44.8 |63.7 |385 |8.2 |3.6 |16.8 |12.6
  198. |[YOLOv5m6][assets] |1280 |51.3 |69.3 |887 |11.1 |6.8 |35.7 |50.0
  199. |[YOLOv5l6][assets] |1280 |53.7 |71.3 |1784 |15.8 |10.5 |76.8 |111.4
  200. |[YOLOv5x6][assets]<br>+ [TTA][TTA]|1280<br>1536 |55.0<br>**55.8** |72.7<br>**72.7** |3136<br>- |26.2<br>- |19.4<br>- |140.7<br>- |209.8<br>-
  201. <details>
  202. <summary>Table Notes (click to expand)</summary>
  203. * All checkpoints are trained to 300 epochs with default settings. Nano and Small models use [hyp.scratch-low.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-low.yaml) hyps, all others use [hyp.scratch-high.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-high.yaml).
  204. * **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](http://cocodataset.org) dataset.<br>Reproduce by `python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65`
  205. * **Speed** averaged over COCO val images using a [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) instance. NMS times (~1 ms/img) not included.<br>Reproduce by `python val.py --data coco.yaml --img 640 --task speed --batch 1`
  206. * **TTA** [Test Time Augmentation](https://github.com/ultralytics/yolov5/issues/303) includes reflection and scale augmentations.<br>Reproduce by `python val.py --data coco.yaml --img 1536 --iou 0.7 --augment`
  207. </details>
  208. ## <div align="center">Contribute</div>
  209. We love your input! We want to make contributing to YOLOv5 as easy and transparent as possible. Please see our [Contributing Guide](CONTRIBUTING.md) to get started, and fill out the [YOLOv5 Survey](https://ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey) to send us feedback on your experiences. Thank you to all our contributors!
  210. <a href="https://github.com/ultralytics/yolov5/graphs/contributors"><img src="https://opencollective.com/ultralytics/contributors.svg?width=990" /></a>
  211. ## <div align="center">Contact</div>
  212. For YOLOv5 bugs and feature requests please visit [GitHub Issues](https://github.com/ultralytics/yolov5/issues). For business inquiries or
  213. professional support requests please visit [https://ultralytics.com/contact](https://ultralytics.com/contact).
  214. <br>
  215. <div align="center">
  216. <a href="https://github.com/ultralytics">
  217. <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-github.png" width="3%"/>
  218. </a>
  219. <img width="3%" />
  220. <a href="https://www.linkedin.com/company/ultralytics">
  221. <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-linkedin.png" width="3%"/>
  222. </a>
  223. <img width="3%" />
  224. <a href="https://twitter.com/ultralytics">
  225. <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-twitter.png" width="3%"/>
  226. </a>
  227. <img width="3%" />
  228. <a href="https://www.producthunt.com/@glenn_jocher">
  229. <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-producthunt.png" width="3%"/>
  230. </a>
  231. <img width="3%" />
  232. <a href="https://youtube.com/ultralytics">
  233. <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-youtube.png" width="3%"/>
  234. </a>
  235. <img width="3%" />
  236. <a href="https://www.facebook.com/ultralytics">
  237. <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-facebook.png" width="3%"/>
  238. </a>
  239. <img width="3%" />
  240. <a href="https://www.instagram.com/ultralytics/">
  241. <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-instagram.png" width="3%"/>
  242. </a>
  243. </div>