You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

SKU-110K.yaml 2.3KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051
  1. # SKU-110K retail items dataset https://github.com/eg4000/SKU110K_CVPR19
  2. # Train command: python train.py --data SKU-110K.yaml
  3. # Default dataset location is next to YOLOv5:
  4. # /parent
  5. # /datasets/SKU-110K
  6. # /yolov5
  7. # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
  8. path: ../datasets/SKU-110K # dataset root dir
  9. train: train.txt # train images (relative to 'path') 8219 images
  10. val: val.txt # val images (relative to 'path') 588 images
  11. test: test.txt # test images (optional) 2936 images
  12. # Classes
  13. nc: 1 # number of classes
  14. names: [ 'object' ] # class names
  15. # Download script/URL (optional) ---------------------------------------------------------------------------------------
  16. download: |
  17. import shutil
  18. from tqdm import tqdm
  19. from utils.general import np, pd, Path, download, xyxy2xywh
  20. # Download
  21. dir = Path(yaml['path']) # dataset root dir
  22. parent = Path(dir.parent) # download dir
  23. urls = ['http://trax-geometry.s3.amazonaws.com/cvpr_challenge/SKU110K_fixed.tar.gz']
  24. download(urls, dir=parent, delete=False)
  25. # Rename directories
  26. if dir.exists():
  27. shutil.rmtree(dir)
  28. (parent / 'SKU110K_fixed').rename(dir) # rename dir
  29. (dir / 'labels').mkdir(parents=True, exist_ok=True) # create labels dir
  30. # Convert labels
  31. names = 'image', 'x1', 'y1', 'x2', 'y2', 'class', 'image_width', 'image_height' # column names
  32. for d in 'annotations_train.csv', 'annotations_val.csv', 'annotations_test.csv':
  33. x = pd.read_csv(dir / 'annotations' / d, names=names).values # annotations
  34. images, unique_images = x[:, 0], np.unique(x[:, 0])
  35. with open((dir / d).with_suffix('.txt').__str__().replace('annotations_', ''), 'w') as f:
  36. f.writelines(f'./images/{s}\n' for s in unique_images)
  37. for im in tqdm(unique_images, desc=f'Converting {dir / d}'):
  38. cls = 0 # single-class dataset
  39. with open((dir / 'labels' / im).with_suffix('.txt'), 'a') as f:
  40. for r in x[images == im]:
  41. w, h = r[6], r[7] # image width, height
  42. xywh = xyxy2xywh(np.array([[r[1] / w, r[2] / h, r[3] / w, r[4] / h]]))[0] # instance
  43. f.write(f"{cls} {xywh[0]:.5f} {xywh[1]:.5f} {xywh[2]:.5f} {xywh[3]:.5f}\n") # write label