選択できるのは25トピックまでです。 トピックは、先頭が英数字で、英数字とダッシュ('-')を使用した35文字以内のものにしてください。

README.md 10KB

4年前
4年前
4年前
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150
  1. <a href="https://apps.apple.com/app/id1452689527" target="_blank">
  2. <img src="https://user-images.githubusercontent.com/26833433/98699617-a1595a00-2377-11eb-8145-fc674eb9b1a7.jpg" width="1000"></a>
  3. &nbsp
  4. ![CI CPU testing](https://github.com/ultralytics/yolov5/workflows/CI%20CPU%20testing/badge.svg)
  5. This repository represents Ultralytics open-source research into future object detection methods, and incorporates our lessons learned and best practices evolved over training thousands of models on custom client datasets with our previous YOLO repository https://github.com/ultralytics/yolov3. **All code and models are under active development, and are subject to modification or deletion without notice.** Use at your own risk.
  6. <img src="https://user-images.githubusercontent.com/26833433/90187293-6773ba00-dd6e-11ea-8f90-cd94afc0427f.png" width="1000">** GPU Speed measures end-to-end time per image averaged over 5000 COCO val2017 images using a V100 GPU with batch size 32, and includes image preprocessing, PyTorch FP16 inference, postprocessing and NMS. EfficientDet data from [google/automl](https://github.com/google/automl) at batch size 8.
  7. - **August 13, 2020**: [v3.0 release](https://github.com/ultralytics/yolov5/releases/tag/v3.0): nn.Hardswish() activations, data autodownload, native AMP.
  8. - **July 23, 2020**: [v2.0 release](https://github.com/ultralytics/yolov5/releases/tag/v2.0): improved model definition, training and mAP.
  9. - **June 22, 2020**: [PANet](https://arxiv.org/abs/1803.01534) updates: new heads, reduced parameters, improved speed and mAP [364fcfd](https://github.com/ultralytics/yolov5/commit/364fcfd7dba53f46edd4f04c037a039c0a287972).
  10. - **June 19, 2020**: [FP16](https://pytorch.org/docs/stable/nn.html#torch.nn.Module.half) as new default for smaller checkpoints and faster inference [d4c6674](https://github.com/ultralytics/yolov5/commit/d4c6674c98e19df4c40e33a777610a18d1961145).
  11. - **June 9, 2020**: [CSP](https://github.com/WongKinYiu/CrossStagePartialNetworks) updates: improved speed, size, and accuracy (credit to @WongKinYiu for CSP).
  12. - **May 27, 2020**: Public release. YOLOv5 models are SOTA among all known YOLO implementations.
  13. ## Pretrained Checkpoints
  14. | Model | AP<sup>val</sup> | AP<sup>test</sup> | AP<sub>50</sub> | Speed<sub>GPU</sub> | FPS<sub>GPU</sub> || params | GFLOPS |
  15. |---------- |------ |------ |------ | -------- | ------| ------ |------ | :------: |
  16. | [YOLOv5s](https://github.com/ultralytics/yolov5/releases) | 37.0 | 37.0 | 56.2 | **2.4ms** | **416** || 7.5M | 17.5
  17. | [YOLOv5m](https://github.com/ultralytics/yolov5/releases) | 44.3 | 44.3 | 63.2 | 3.4ms | 294 || 21.8M | 52.3
  18. | [YOLOv5l](https://github.com/ultralytics/yolov5/releases) | 47.7 | 47.7 | 66.5 | 4.4ms | 227 || 47.8M | 117.2
  19. | [YOLOv5x](https://github.com/ultralytics/yolov5/releases) | **49.2** | **49.2** | **67.7** | 6.9ms | 145 || 89.0M | 221.5
  20. | | | | | | || |
  21. | [YOLOv5x](https://github.com/ultralytics/yolov5/releases) + TTA|**50.8**| **50.8** | **68.9** | 25.5ms | 39 || 89.0M | 801.0
  22. ** AP<sup>test</sup> denotes COCO [test-dev2017](http://cocodataset.org/#upload) server results, all other AP results denote val2017 accuracy.
  23. ** All AP numbers are for single-model single-scale without ensemble or TTA. **Reproduce mAP** by `python test.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65`
  24. ** Speed<sub>GPU</sub> averaged over 5000 COCO val2017 images using a GCP [n1-standard-16](https://cloud.google.com/compute/docs/machine-types#n1_standard_machine_types) V100 instance, and includes image preprocessing, FP16 inference, postprocessing and NMS. NMS is 1-2ms/img. **Reproduce speed** by `python test.py --data coco.yaml --img 640 --conf 0.25 --iou 0.45`
  25. ** All checkpoints are trained to 300 epochs with default settings and hyperparameters (no autoaugmentation).
  26. ** Test Time Augmentation ([TTA](https://github.com/ultralytics/yolov5/issues/303)) runs at 3 image sizes. **Reproduce TTA** by `python test.py --data coco.yaml --img 832 --iou 0.65 --augment`
  27. ## Requirements
  28. Python 3.8 or later with all [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) dependencies installed, including `torch>=1.7`. To install run:
  29. ```bash
  30. $ pip install -r requirements.txt
  31. ```
  32. ## Tutorials
  33. * [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data)&nbsp; 🚀 RECOMMENDED
  34. * [Weights & Biases Logging](https://github.com/ultralytics/yolov5/issues/1289)&nbsp; 🌟 NEW
  35. * [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475)
  36. * [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36)&nbsp; ⭐ NEW
  37. * [ONNX and TorchScript Export](https://github.com/ultralytics/yolov5/issues/251)
  38. * [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303)
  39. * [Model Ensembling](https://github.com/ultralytics/yolov5/issues/318)
  40. * [Model Pruning/Sparsity](https://github.com/ultralytics/yolov5/issues/304)
  41. * [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607)
  42. * [Transfer Learning with Frozen Layers](https://github.com/ultralytics/yolov5/issues/1314)&nbsp; ⭐ NEW
  43. * [TensorRT Deployment](https://github.com/wang-xinyu/tensorrtx)
  44. ## Environments
  45. YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):
  46. - **Google Colab Notebook** with free GPU: <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
  47. - **Kaggle Notebook** with free GPU: [https://www.kaggle.com/ultralytics/yolov5](https://www.kaggle.com/ultralytics/yolov5)
  48. - **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)
  49. - **Docker Image** https://hub.docker.com/r/ultralytics/yolov5. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) ![Docker Pulls](https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker)
  50. ## Inference
  51. detect.py runs inference on a variety of sources, downloading models automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`.
  52. ```bash
  53. $ python detect.py --source 0 # webcam
  54. file.jpg # image
  55. file.mp4 # video
  56. path/ # directory
  57. path/*.jpg # glob
  58. rtsp://170.93.143.139/rtplive/470011e600ef003a004ee33696235daa # rtsp stream
  59. rtmp://192.168.1.105/live/test # rtmp stream
  60. http://112.50.243.8/PLTV/88888888/224/3221225900/1.m3u8 # http stream
  61. ```
  62. To run inference on example images in `data/images`:
  63. ```bash
  64. $ python detect.py --source data/images --weights yolov5s.pt --conf 0.25
  65. Namespace(agnostic_nms=False, augment=False, classes=None, conf_thres=0.25, device='', img_size=640, iou_thres=0.45, save_conf=False, save_dir='runs/detect', save_txt=False, source='data/images/', update=False, view_img=False, weights=['yolov5s.pt'])
  66. Using torch 1.7.0+cu101 CUDA:0 (Tesla V100-SXM2-16GB, 16130MB)
  67. Downloading https://github.com/ultralytics/yolov5/releases/download/v3.1/yolov5s.pt to yolov5s.pt... 100%|██████████████| 14.5M/14.5M [00:00<00:00, 21.3MB/s]
  68. Fusing layers...
  69. Model Summary: 232 layers, 7459581 parameters, 0 gradients
  70. image 1/2 data/images/bus.jpg: 640x480 4 persons, 1 buss, 1 skateboards, Done. (0.012s)
  71. image 2/2 data/images/zidane.jpg: 384x640 2 persons, 2 ties, Done. (0.012s)
  72. Results saved to runs/detect/exp
  73. Done. (0.113s)
  74. ```
  75. <img src="https://user-images.githubusercontent.com/26833433/97107365-685a8d80-16c7-11eb-8c2e-83aac701d8b9.jpeg" width="500">
  76. ### PyTorch Hub
  77. To run **batched inference** with YOLOv5 and [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36):
  78. ```python
  79. import torch
  80. from PIL import Image
  81. # Model
  82. model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True) # for PIL/cv2/np inputs and NMS
  83. # Images
  84. img1 = Image.open('zidane.jpg')
  85. img2 = Image.open('bus.jpg')
  86. imgs = [img1, img2] # batched list of images
  87. # Inference
  88. prediction = model(imgs, size=640) # includes NMS
  89. ```
  90. ## Training
  91. Download [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh) and run command below. Training times for YOLOv5s/m/l/x are 2/4/6/8 days on a single V100 (multi-GPU times faster). Use the largest `--batch-size` your GPU allows (batch sizes shown for 16 GB devices).
  92. ```bash
  93. $ python train.py --data coco.yaml --cfg yolov5s.yaml --weights '' --batch-size 64
  94. yolov5m 40
  95. yolov5l 24
  96. yolov5x 16
  97. ```
  98. <img src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png" width="900">
  99. ## Citation
  100. [![DOI](https://zenodo.org/badge/264818686.svg)](https://zenodo.org/badge/latestdoi/264818686)
  101. ## About Us
  102. Ultralytics is a U.S.-based particle physics and AI startup with over 6 years of expertise supporting government, academic and business clients. We offer a wide range of vision AI services, spanning from simple expert advice up to delivery of fully customized, end-to-end production solutions, including:
  103. - **Cloud-based AI** systems operating on **hundreds of HD video streams in realtime.**
  104. - **Edge AI** integrated into custom iOS and Android apps for realtime **30 FPS video inference.**
  105. - **Custom data training**, hyperparameter evolution, and model exportation to any destination.
  106. For business inquiries and professional support requests please visit us at https://www.ultralytics.com.
  107. ## Contact
  108. **Issues should be raised directly in the repository.** For business inquiries or professional support requests please visit https://www.ultralytics.com or email Glenn Jocher at glenn.jocher@ultralytics.com.