Nelze vybrat více než 25 témat Téma musí začínat písmenem nebo číslem, může obsahovat pomlčky („-“) a může být dlouhé až 35 znaků.

před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
[WIP] Feature/ddp fixed (#401) * Squashed commit of the following: commit d738487089e41c22b3b1cd73aa7c1c40320a6ebf Author: NanoCode012 <kevinvong@rocketmail.com> Date: Tue Jul 14 17:33:38 2020 +0700 Adding world_size Reduce calls to torch.distributed. For use in create_dataloader. commit e742dd9619d29306c7541821238d3d7cddcdc508 Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Tue Jul 14 15:38:48 2020 +0800 Make SyncBN a choice commit e90d4004387e6103fecad745f8cbc2edc918e906 Merge: 5bf8beb cd90360 Author: yzchen <Chenyzsjtu@gmail.com> Date: Tue Jul 14 15:32:10 2020 +0800 Merge pull request #6 from NanoCode012/patch-5 Update train.py commit cd9036017e7f8bd519a8b62adab0f47ea67f4962 Author: NanoCode012 <kevinvong@rocketmail.com> Date: Tue Jul 14 13:39:29 2020 +0700 Update train.py Remove redundant `opt.` prefix. commit 5bf8bebe8873afb18b762fe1f409aca116fac073 Merge: c9558a9 a1c8406 Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Tue Jul 14 14:09:51 2020 +0800 Merge branch 'master' of https://github.com/ultralytics/yolov5 into feature/DDP_fixed commit c9558a9b51547febb03d9c1ca42e2ef0fc15bb31 Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Tue Jul 14 13:51:34 2020 +0800 Add device allocation for loss compute commit 4f08c692fb5e943a89e0ee354ef6c80a50eeb28d Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Thu Jul 9 11:16:27 2020 +0800 Revert drop_last commit 1dabe33a5a223b758cc761fc8741c6224205a34b Merge: a1ce9b1 4b8450b Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Thu Jul 9 11:15:49 2020 +0800 Merge branch 'feature/DDP_fixed' of https://github.com/MagicFrogSJTU/yolov5 into feature/DDP_fixed commit a1ce9b1e96b71d7fcb9d3e8143013eb8cebe5e27 Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Thu Jul 9 11:15:21 2020 +0800 fix lr warning commit 4b8450b46db76e5e58cd95df965d4736077cfb0e Merge: b9a50ae 02c63ef Author: yzchen <Chenyzsjtu@gmail.com> Date: Wed Jul 8 21:24:24 2020 +0800 Merge pull request #4 from NanoCode012/patch-4 Add drop_last for multi gpu commit 02c63ef81cf98b28b10344fe2cce08a03b143941 Author: NanoCode012 <kevinvong@rocketmail.com> Date: Wed Jul 8 10:08:30 2020 +0700 Add drop_last for multi gpu commit b9a50aed48ab1536f94d49269977e2accd67748f Merge: ec2dc6c 121d90b Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Tue Jul 7 19:48:04 2020 +0800 Merge branch 'master' of https://github.com/ultralytics/yolov5 into feature/DDP_fixed commit ec2dc6cc56de43ddff939e14c450672d0fbf9b3d Merge: d0326e3 82a6182 Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Tue Jul 7 19:34:31 2020 +0800 Merge branch 'feature/DDP_fixed' of https://github.com/MagicFrogSJTU/yolov5 into feature/DDP_fixed commit d0326e398dfeeeac611ccc64198d4fe91b7aa969 Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Tue Jul 7 19:31:24 2020 +0800 Add SyncBN commit 82a6182b3ad0689a4432b631b438004e5acb3b74 Merge: 96fa40a 050b2a5 Author: yzchen <Chenyzsjtu@gmail.com> Date: Tue Jul 7 19:21:01 2020 +0800 Merge pull request #1 from NanoCode012/patch-2 Convert BatchNorm to SyncBatchNorm commit 050b2a5a79a89c9405854d439a1f70f892139b1c Author: NanoCode012 <kevinvong@rocketmail.com> Date: Tue Jul 7 12:38:14 2020 +0700 Add cleanup for process_group commit 2aa330139f3cc1237aeb3132245ed7e5d6da1683 Author: NanoCode012 <kevinvong@rocketmail.com> Date: Tue Jul 7 12:07:40 2020 +0700 Remove apex.parallel. Use torch.nn.parallel For future compatibility commit 77c8e27e603bea9a69e7647587ca8d509dc1990d Author: NanoCode012 <kevinvong@rocketmail.com> Date: Tue Jul 7 01:54:39 2020 +0700 Convert BatchNorm to SyncBatchNorm commit 96fa40a3a925e4ffd815fe329e1b5181ec92adc8 Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Mon Jul 6 21:53:56 2020 +0800 Fix the datset inconsistency problem commit 16e7c269d062c8d16c4d4ff70cc80fd87935dc95 Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Mon Jul 6 11:34:03 2020 +0800 Add loss multiplication to preserver the single-process performance commit e83805563065ffd2e38f85abe008fc662cc17909 Merge: 625bb49 3bdea3f Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Fri Jul 3 20:56:30 2020 +0800 Merge branch 'master' of https://github.com/ultralytics/yolov5 into feature/DDP_fixed commit 625bb49f4e52d781143fea0af36d14e5be8b040c Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Thu Jul 2 22:45:15 2020 +0800 DDP established * Squashed commit of the following: commit 94147314e559a6bdd13cb9de62490d385c27596f Merge: 65157e2 37acbdc Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Thu Jul 16 14:00:17 2020 +0800 Merge branch 'master' of https://github.com/ultralytics/yolov4 into feature/DDP_fixed commit 37acbdc0b6ef8c3343560834b914c83bbb0abbd1 Author: Glenn Jocher <glenn.jocher@ultralytics.com> Date: Wed Jul 15 20:03:41 2020 -0700 update test.py --save-txt commit b8c2da4a0d6880afd7857207340706666071145b Author: Glenn Jocher <glenn.jocher@ultralytics.com> Date: Wed Jul 15 20:00:48 2020 -0700 update test.py --save-txt commit 65157e2fc97d371bc576e18b424e130eb3026917 Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Wed Jul 15 16:44:13 2020 +0800 Revert the README.md removal commit 1c802bfa503623661d8617ca3f259835d27c5345 Merge: cd55b44 0f3b8bb Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Wed Jul 15 16:43:38 2020 +0800 Merge branch 'feature/DDP_fixed' of https://github.com/MagicFrogSJTU/yolov5 into feature/DDP_fixed commit cd55b445c4dcd8003ff4b0b46b64adf7c16e5ce7 Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Wed Jul 15 16:42:33 2020 +0800 fix the DDP performance deterioration bug. commit 0f3b8bb1fae5885474ba861bbbd1924fb622ee93 Author: Glenn Jocher <glenn.jocher@ultralytics.com> Date: Wed Jul 15 00:28:53 2020 -0700 Delete README.md commit f5921ba1e35475f24b062456a890238cb7a3cf94 Merge: 85ab2f3 bd3fdbb Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Wed Jul 15 11:20:17 2020 +0800 Merge branch 'feature/DDP_fixed' of https://github.com/MagicFrogSJTU/yolov5 into feature/DDP_fixed commit bd3fdbbf1b08ef87931eef49fa8340621caa7e87 Author: Glenn Jocher <glenn.jocher@ultralytics.com> Date: Tue Jul 14 18:38:20 2020 -0700 Update README.md commit c1a97a7767ccb2aa9afc7a5e72fd159e7c62ec02 Merge: 2bf86b8 f796708 Author: Glenn Jocher <glenn.jocher@ultralytics.com> Date: Tue Jul 14 18:36:53 2020 -0700 Merge branch 'master' into feature/DDP_fixed commit 2bf86b892fa2fd712f6530903a0d9b8533d7447a Author: NanoCode012 <kevinvong@rocketmail.com> Date: Tue Jul 14 22:18:15 2020 +0700 Fixed world_size not found when called from test commit 85ab2f38cdda28b61ad15a3a5a14c3aafb620dc8 Merge: 5a19011 c8357ad Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Tue Jul 14 22:19:58 2020 +0800 Merge branch 'feature/DDP_fixed' of https://github.com/MagicFrogSJTU/yolov5 into feature/DDP_fixed commit 5a19011949398d06e744d8d5521ab4e6dfa06ab7 Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Tue Jul 14 22:19:15 2020 +0800 Add assertion for <=2 gpus DDP commit c8357ad5b15a0e6aeef4d7fe67ca9637f7322a4d Merge: e742dd9 787582f Author: yzchen <Chenyzsjtu@gmail.com> Date: Tue Jul 14 22:10:02 2020 +0800 Merge pull request #8 from MagicFrogSJTU/NanoCode012-patch-1 Modify number of dataloaders' workers commit 787582f97251834f955ef05a77072b8c673a8397 Author: NanoCode012 <kevinvong@rocketmail.com> Date: Tue Jul 14 20:38:58 2020 +0700 Fixed issue with single gpu not having world_size commit 63648925288d63a21174a4dd28f92dbfebfeb75a Author: NanoCode012 <kevinvong@rocketmail.com> Date: Tue Jul 14 19:16:15 2020 +0700 Add assert message for clarification Clarify why assertion was thrown to users commit 69364d6050e048d0d8834e0f30ce84da3f6a13f3 Author: NanoCode012 <kevinvong@rocketmail.com> Date: Tue Jul 14 17:36:48 2020 +0700 Changed number of workers check commit d738487089e41c22b3b1cd73aa7c1c40320a6ebf Author: NanoCode012 <kevinvong@rocketmail.com> Date: Tue Jul 14 17:33:38 2020 +0700 Adding world_size Reduce calls to torch.distributed. For use in create_dataloader. commit e742dd9619d29306c7541821238d3d7cddcdc508 Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Tue Jul 14 15:38:48 2020 +0800 Make SyncBN a choice commit e90d4004387e6103fecad745f8cbc2edc918e906 Merge: 5bf8beb cd90360 Author: yzchen <Chenyzsjtu@gmail.com> Date: Tue Jul 14 15:32:10 2020 +0800 Merge pull request #6 from NanoCode012/patch-5 Update train.py commit cd9036017e7f8bd519a8b62adab0f47ea67f4962 Author: NanoCode012 <kevinvong@rocketmail.com> Date: Tue Jul 14 13:39:29 2020 +0700 Update train.py Remove redundant `opt.` prefix. commit 5bf8bebe8873afb18b762fe1f409aca116fac073 Merge: c9558a9 a1c8406 Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Tue Jul 14 14:09:51 2020 +0800 Merge branch 'master' of https://github.com/ultralytics/yolov5 into feature/DDP_fixed commit c9558a9b51547febb03d9c1ca42e2ef0fc15bb31 Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Tue Jul 14 13:51:34 2020 +0800 Add device allocation for loss compute commit 4f08c692fb5e943a89e0ee354ef6c80a50eeb28d Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Thu Jul 9 11:16:27 2020 +0800 Revert drop_last commit 1dabe33a5a223b758cc761fc8741c6224205a34b Merge: a1ce9b1 4b8450b Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Thu Jul 9 11:15:49 2020 +0800 Merge branch 'feature/DDP_fixed' of https://github.com/MagicFrogSJTU/yolov5 into feature/DDP_fixed commit a1ce9b1e96b71d7fcb9d3e8143013eb8cebe5e27 Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Thu Jul 9 11:15:21 2020 +0800 fix lr warning commit 4b8450b46db76e5e58cd95df965d4736077cfb0e Merge: b9a50ae 02c63ef Author: yzchen <Chenyzsjtu@gmail.com> Date: Wed Jul 8 21:24:24 2020 +0800 Merge pull request #4 from NanoCode012/patch-4 Add drop_last for multi gpu commit 02c63ef81cf98b28b10344fe2cce08a03b143941 Author: NanoCode012 <kevinvong@rocketmail.com> Date: Wed Jul 8 10:08:30 2020 +0700 Add drop_last for multi gpu commit b9a50aed48ab1536f94d49269977e2accd67748f Merge: ec2dc6c 121d90b Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Tue Jul 7 19:48:04 2020 +0800 Merge branch 'master' of https://github.com/ultralytics/yolov5 into feature/DDP_fixed commit ec2dc6cc56de43ddff939e14c450672d0fbf9b3d Merge: d0326e3 82a6182 Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Tue Jul 7 19:34:31 2020 +0800 Merge branch 'feature/DDP_fixed' of https://github.com/MagicFrogSJTU/yolov5 into feature/DDP_fixed commit d0326e398dfeeeac611ccc64198d4fe91b7aa969 Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Tue Jul 7 19:31:24 2020 +0800 Add SyncBN commit 82a6182b3ad0689a4432b631b438004e5acb3b74 Merge: 96fa40a 050b2a5 Author: yzchen <Chenyzsjtu@gmail.com> Date: Tue Jul 7 19:21:01 2020 +0800 Merge pull request #1 from NanoCode012/patch-2 Convert BatchNorm to SyncBatchNorm commit 050b2a5a79a89c9405854d439a1f70f892139b1c Author: NanoCode012 <kevinvong@rocketmail.com> Date: Tue Jul 7 12:38:14 2020 +0700 Add cleanup for process_group commit 2aa330139f3cc1237aeb3132245ed7e5d6da1683 Author: NanoCode012 <kevinvong@rocketmail.com> Date: Tue Jul 7 12:07:40 2020 +0700 Remove apex.parallel. Use torch.nn.parallel For future compatibility commit 77c8e27e603bea9a69e7647587ca8d509dc1990d Author: NanoCode012 <kevinvong@rocketmail.com> Date: Tue Jul 7 01:54:39 2020 +0700 Convert BatchNorm to SyncBatchNorm commit 96fa40a3a925e4ffd815fe329e1b5181ec92adc8 Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Mon Jul 6 21:53:56 2020 +0800 Fix the datset inconsistency problem commit 16e7c269d062c8d16c4d4ff70cc80fd87935dc95 Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Mon Jul 6 11:34:03 2020 +0800 Add loss multiplication to preserver the single-process performance commit e83805563065ffd2e38f85abe008fc662cc17909 Merge: 625bb49 3bdea3f Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Fri Jul 3 20:56:30 2020 +0800 Merge branch 'master' of https://github.com/ultralytics/yolov5 into feature/DDP_fixed commit 625bb49f4e52d781143fea0af36d14e5be8b040c Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Thu Jul 2 22:45:15 2020 +0800 DDP established * Fixed destroy_process_group in DP mode * Update torch_utils.py * Update utils.py Revert build_targets() to current master. * Update datasets.py * Fixed world_size attribute not found Co-authored-by: NanoCode012 <kevinvong@rocketmail.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933
  1. # Dataset utils and dataloaders
  2. import glob
  3. import logging
  4. import math
  5. import os
  6. import random
  7. import shutil
  8. import time
  9. from itertools import repeat
  10. from multiprocessing.pool import ThreadPool
  11. from pathlib import Path
  12. from threading import Thread
  13. import cv2
  14. import numpy as np
  15. import torch
  16. from PIL import Image, ExifTags
  17. from torch.utils.data import Dataset
  18. from tqdm import tqdm
  19. from utils.general import xyxy2xywh, xywh2xyxy
  20. from utils.torch_utils import torch_distributed_zero_first
  21. # Parameters
  22. help_url = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data'
  23. img_formats = ['bmp', 'jpg', 'jpeg', 'png', 'tif', 'tiff', 'dng'] # acceptable image suffixes
  24. vid_formats = ['mov', 'avi', 'mp4', 'mpg', 'mpeg', 'm4v', 'wmv', 'mkv'] # acceptable video suffixes
  25. logger = logging.getLogger(__name__)
  26. # Get orientation exif tag
  27. for orientation in ExifTags.TAGS.keys():
  28. if ExifTags.TAGS[orientation] == 'Orientation':
  29. break
  30. def get_hash(files):
  31. # Returns a single hash value of a list of files
  32. return sum(os.path.getsize(f) for f in files if os.path.isfile(f))
  33. def exif_size(img):
  34. # Returns exif-corrected PIL size
  35. s = img.size # (width, height)
  36. try:
  37. rotation = dict(img._getexif().items())[orientation]
  38. if rotation == 6: # rotation 270
  39. s = (s[1], s[0])
  40. elif rotation == 8: # rotation 90
  41. s = (s[1], s[0])
  42. except:
  43. pass
  44. return s
  45. def create_dataloader(path, imgsz, batch_size, stride, opt, hyp=None, augment=False, cache=False, pad=0.0, rect=False,
  46. rank=-1, world_size=1, workers=8, image_weights=False):
  47. # Make sure only the first process in DDP process the dataset first, and the following others can use the cache
  48. with torch_distributed_zero_first(rank):
  49. dataset = LoadImagesAndLabels(path, imgsz, batch_size,
  50. augment=augment, # augment images
  51. hyp=hyp, # augmentation hyperparameters
  52. rect=rect, # rectangular training
  53. cache_images=cache,
  54. single_cls=opt.single_cls,
  55. stride=int(stride),
  56. pad=pad,
  57. rank=rank,
  58. image_weights=image_weights)
  59. batch_size = min(batch_size, len(dataset))
  60. nw = min([os.cpu_count() // world_size, batch_size if batch_size > 1 else 0, workers]) # number of workers
  61. sampler = torch.utils.data.distributed.DistributedSampler(dataset) if rank != -1 else None
  62. loader = torch.utils.data.DataLoader if image_weights else InfiniteDataLoader
  63. # Use torch.utils.data.DataLoader() if dataset.properties will update during training else InfiniteDataLoader()
  64. dataloader = loader(dataset,
  65. batch_size=batch_size,
  66. num_workers=nw,
  67. sampler=sampler,
  68. pin_memory=True,
  69. collate_fn=LoadImagesAndLabels.collate_fn)
  70. return dataloader, dataset
  71. class InfiniteDataLoader(torch.utils.data.dataloader.DataLoader):
  72. """ Dataloader that reuses workers
  73. Uses same syntax as vanilla DataLoader
  74. """
  75. def __init__(self, *args, **kwargs):
  76. super().__init__(*args, **kwargs)
  77. object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler))
  78. self.iterator = super().__iter__()
  79. def __len__(self):
  80. return len(self.batch_sampler.sampler)
  81. def __iter__(self):
  82. for i in range(len(self)):
  83. yield next(self.iterator)
  84. class _RepeatSampler(object):
  85. """ Sampler that repeats forever
  86. Args:
  87. sampler (Sampler)
  88. """
  89. def __init__(self, sampler):
  90. self.sampler = sampler
  91. def __iter__(self):
  92. while True:
  93. yield from iter(self.sampler)
  94. class LoadImages: # for inference
  95. def __init__(self, path, img_size=640):
  96. p = str(Path(path)) # os-agnostic
  97. p = os.path.abspath(p) # absolute path
  98. if '*' in p:
  99. files = sorted(glob.glob(p, recursive=True)) # glob
  100. elif os.path.isdir(p):
  101. files = sorted(glob.glob(os.path.join(p, '*.*'))) # dir
  102. elif os.path.isfile(p):
  103. files = [p] # files
  104. else:
  105. raise Exception('ERROR: %s does not exist' % p)
  106. images = [x for x in files if x.split('.')[-1].lower() in img_formats]
  107. videos = [x for x in files if x.split('.')[-1].lower() in vid_formats]
  108. ni, nv = len(images), len(videos)
  109. self.img_size = img_size
  110. self.files = images + videos
  111. self.nf = ni + nv # number of files
  112. self.video_flag = [False] * ni + [True] * nv
  113. self.mode = 'images'
  114. if any(videos):
  115. self.new_video(videos[0]) # new video
  116. else:
  117. self.cap = None
  118. assert self.nf > 0, 'No images or videos found in %s. Supported formats are:\nimages: %s\nvideos: %s' % \
  119. (p, img_formats, vid_formats)
  120. def __iter__(self):
  121. self.count = 0
  122. return self
  123. def __next__(self):
  124. if self.count == self.nf:
  125. raise StopIteration
  126. path = self.files[self.count]
  127. if self.video_flag[self.count]:
  128. # Read video
  129. self.mode = 'video'
  130. ret_val, img0 = self.cap.read()
  131. if not ret_val:
  132. self.count += 1
  133. self.cap.release()
  134. if self.count == self.nf: # last video
  135. raise StopIteration
  136. else:
  137. path = self.files[self.count]
  138. self.new_video(path)
  139. ret_val, img0 = self.cap.read()
  140. self.frame += 1
  141. print('video %g/%g (%g/%g) %s: ' % (self.count + 1, self.nf, self.frame, self.nframes, path), end='')
  142. else:
  143. # Read image
  144. self.count += 1
  145. img0 = cv2.imread(path) # BGR
  146. assert img0 is not None, 'Image Not Found ' + path
  147. print('image %g/%g %s: ' % (self.count, self.nf, path), end='')
  148. # Padded resize
  149. img = letterbox(img0, new_shape=self.img_size)[0]
  150. # Convert
  151. img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
  152. img = np.ascontiguousarray(img)
  153. return path, img, img0, self.cap
  154. def new_video(self, path):
  155. self.frame = 0
  156. self.cap = cv2.VideoCapture(path)
  157. self.nframes = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT))
  158. def __len__(self):
  159. return self.nf # number of files
  160. class LoadWebcam: # for inference
  161. def __init__(self, pipe='0', img_size=640):
  162. self.img_size = img_size
  163. if pipe.isnumeric():
  164. pipe = eval(pipe) # local camera
  165. # pipe = 'rtsp://192.168.1.64/1' # IP camera
  166. # pipe = 'rtsp://username:password@192.168.1.64/1' # IP camera with login
  167. # pipe = 'http://wmccpinetop.axiscam.net/mjpg/video.mjpg' # IP golf camera
  168. self.pipe = pipe
  169. self.cap = cv2.VideoCapture(pipe) # video capture object
  170. self.cap.set(cv2.CAP_PROP_BUFFERSIZE, 3) # set buffer size
  171. def __iter__(self):
  172. self.count = -1
  173. return self
  174. def __next__(self):
  175. self.count += 1
  176. if cv2.waitKey(1) == ord('q'): # q to quit
  177. self.cap.release()
  178. cv2.destroyAllWindows()
  179. raise StopIteration
  180. # Read frame
  181. if self.pipe == 0: # local camera
  182. ret_val, img0 = self.cap.read()
  183. img0 = cv2.flip(img0, 1) # flip left-right
  184. else: # IP camera
  185. n = 0
  186. while True:
  187. n += 1
  188. self.cap.grab()
  189. if n % 30 == 0: # skip frames
  190. ret_val, img0 = self.cap.retrieve()
  191. if ret_val:
  192. break
  193. # Print
  194. assert ret_val, 'Camera Error %s' % self.pipe
  195. img_path = 'webcam.jpg'
  196. print('webcam %g: ' % self.count, end='')
  197. # Padded resize
  198. img = letterbox(img0, new_shape=self.img_size)[0]
  199. # Convert
  200. img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
  201. img = np.ascontiguousarray(img)
  202. return img_path, img, img0, None
  203. def __len__(self):
  204. return 0
  205. class LoadStreams: # multiple IP or RTSP cameras
  206. def __init__(self, sources='streams.txt', img_size=640):
  207. self.mode = 'images'
  208. self.img_size = img_size
  209. if os.path.isfile(sources):
  210. with open(sources, 'r') as f:
  211. sources = [x.strip() for x in f.read().strip().splitlines() if len(x.strip())]
  212. else:
  213. sources = [sources]
  214. n = len(sources)
  215. self.imgs = [None] * n
  216. self.sources = sources
  217. for i, s in enumerate(sources):
  218. # Start the thread to read frames from the video stream
  219. print('%g/%g: %s... ' % (i + 1, n, s), end='')
  220. cap = cv2.VideoCapture(eval(s) if s.isnumeric() else s)
  221. assert cap.isOpened(), 'Failed to open %s' % s
  222. w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
  223. h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
  224. fps = cap.get(cv2.CAP_PROP_FPS) % 100
  225. _, self.imgs[i] = cap.read() # guarantee first frame
  226. thread = Thread(target=self.update, args=([i, cap]), daemon=True)
  227. print(' success (%gx%g at %.2f FPS).' % (w, h, fps))
  228. thread.start()
  229. print('') # newline
  230. # check for common shapes
  231. s = np.stack([letterbox(x, new_shape=self.img_size)[0].shape for x in self.imgs], 0) # inference shapes
  232. self.rect = np.unique(s, axis=0).shape[0] == 1 # rect inference if all shapes equal
  233. if not self.rect:
  234. print('WARNING: Different stream shapes detected. For optimal performance supply similarly-shaped streams.')
  235. def update(self, index, cap):
  236. # Read next stream frame in a daemon thread
  237. n = 0
  238. while cap.isOpened():
  239. n += 1
  240. # _, self.imgs[index] = cap.read()
  241. cap.grab()
  242. if n == 4: # read every 4th frame
  243. _, self.imgs[index] = cap.retrieve()
  244. n = 0
  245. time.sleep(0.01) # wait time
  246. def __iter__(self):
  247. self.count = -1
  248. return self
  249. def __next__(self):
  250. self.count += 1
  251. img0 = self.imgs.copy()
  252. if cv2.waitKey(1) == ord('q'): # q to quit
  253. cv2.destroyAllWindows()
  254. raise StopIteration
  255. # Letterbox
  256. img = [letterbox(x, new_shape=self.img_size, auto=self.rect)[0] for x in img0]
  257. # Stack
  258. img = np.stack(img, 0)
  259. # Convert
  260. img = img[:, :, :, ::-1].transpose(0, 3, 1, 2) # BGR to RGB, to bsx3x416x416
  261. img = np.ascontiguousarray(img)
  262. return self.sources, img, img0, None
  263. def __len__(self):
  264. return 0 # 1E12 frames = 32 streams at 30 FPS for 30 years
  265. def img2label_paths(img_paths):
  266. # Define label paths as a function of image paths
  267. sa, sb = os.sep + 'images' + os.sep, os.sep + 'labels' + os.sep # /images/, /labels/ substrings
  268. return [x.replace(sa, sb, 1).replace('.' + x.split('.')[-1], '.txt') for x in img_paths]
  269. class LoadImagesAndLabels(Dataset): # for training/testing
  270. def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False,
  271. cache_images=False, single_cls=False, stride=32, pad=0.0, rank=-1):
  272. self.img_size = img_size
  273. self.augment = augment
  274. self.hyp = hyp
  275. self.image_weights = image_weights
  276. self.rect = False if image_weights else rect
  277. self.mosaic = self.augment and not self.rect # load 4 images at a time into a mosaic (only during training)
  278. self.mosaic_border = [-img_size // 2, -img_size // 2]
  279. self.stride = stride
  280. try:
  281. f = [] # image files
  282. for p in path if isinstance(path, list) else [path]:
  283. p = Path(p) # os-agnostic
  284. if p.is_dir(): # dir
  285. f += glob.glob(str(p / '**' / '*.*'), recursive=True)
  286. elif p.is_file(): # file
  287. with open(p, 'r') as t:
  288. t = t.read().strip().splitlines()
  289. parent = str(p.parent) + os.sep
  290. f += [x.replace('./', parent) if x.startswith('./') else x for x in t] # local to global path
  291. else:
  292. raise Exception('%s does not exist' % p)
  293. self.img_files = sorted([x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in img_formats])
  294. assert self.img_files, 'No images found'
  295. except Exception as e:
  296. raise Exception('Error loading data from %s: %s\nSee %s' % (path, e, help_url))
  297. # Check cache
  298. self.label_files = img2label_paths(self.img_files) # labels
  299. cache_path = Path(self.label_files[0]).parent.with_suffix('.cache') # cached labels
  300. if cache_path.is_file():
  301. cache = torch.load(cache_path) # load
  302. if cache['hash'] != get_hash(self.label_files + self.img_files) or 'results' not in cache: # changed
  303. cache = self.cache_labels(cache_path) # re-cache
  304. else:
  305. cache = self.cache_labels(cache_path) # cache
  306. # Display cache
  307. [nf, nm, ne, nc, n] = cache.pop('results') # found, missing, empty, corrupted, total
  308. desc = f"Scanning '{cache_path}' for images and labels... {nf} found, {nm} missing, {ne} empty, {nc} corrupted"
  309. tqdm(None, desc=desc, total=n, initial=n)
  310. assert nf > 0 or not augment, f'No labels found in {cache_path}. Can not train without labels. See {help_url}'
  311. # Read cache
  312. cache.pop('hash') # remove hash
  313. labels, shapes = zip(*cache.values())
  314. self.labels = list(labels)
  315. self.shapes = np.array(shapes, dtype=np.float64)
  316. self.img_files = list(cache.keys()) # update
  317. self.label_files = img2label_paths(cache.keys()) # update
  318. if single_cls:
  319. for x in self.labels:
  320. x[:, 0] = 0
  321. n = len(shapes) # number of images
  322. bi = np.floor(np.arange(n) / batch_size).astype(np.int) # batch index
  323. nb = bi[-1] + 1 # number of batches
  324. self.batch = bi # batch index of image
  325. self.n = n
  326. self.indices = range(n)
  327. # Rectangular Training
  328. if self.rect:
  329. # Sort by aspect ratio
  330. s = self.shapes # wh
  331. ar = s[:, 1] / s[:, 0] # aspect ratio
  332. irect = ar.argsort()
  333. self.img_files = [self.img_files[i] for i in irect]
  334. self.label_files = [self.label_files[i] for i in irect]
  335. self.labels = [self.labels[i] for i in irect]
  336. self.shapes = s[irect] # wh
  337. ar = ar[irect]
  338. # Set training image shapes
  339. shapes = [[1, 1]] * nb
  340. for i in range(nb):
  341. ari = ar[bi == i]
  342. mini, maxi = ari.min(), ari.max()
  343. if maxi < 1:
  344. shapes[i] = [maxi, 1]
  345. elif mini > 1:
  346. shapes[i] = [1, 1 / mini]
  347. self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int) * stride
  348. # Cache images into memory for faster training (WARNING: large datasets may exceed system RAM)
  349. self.imgs = [None] * n
  350. if cache_images:
  351. gb = 0 # Gigabytes of cached images
  352. self.img_hw0, self.img_hw = [None] * n, [None] * n
  353. results = ThreadPool(8).imap(lambda x: load_image(*x), zip(repeat(self), range(n))) # 8 threads
  354. pbar = tqdm(enumerate(results), total=n)
  355. for i, x in pbar:
  356. self.imgs[i], self.img_hw0[i], self.img_hw[i] = x # img, hw_original, hw_resized = load_image(self, i)
  357. gb += self.imgs[i].nbytes
  358. pbar.desc = 'Caching images (%.1fGB)' % (gb / 1E9)
  359. def cache_labels(self, path=Path('./labels.cache')):
  360. # Cache dataset labels, check images and read shapes
  361. x = {} # dict
  362. nm, nf, ne, nc = 0, 0, 0, 0 # number missing, found, empty, duplicate
  363. pbar = tqdm(zip(self.img_files, self.label_files), desc='Scanning images', total=len(self.img_files))
  364. for i, (im_file, lb_file) in enumerate(pbar):
  365. try:
  366. # verify images
  367. im = Image.open(im_file)
  368. im.verify() # PIL verify
  369. shape = exif_size(im) # image size
  370. assert (shape[0] > 9) & (shape[1] > 9), 'image size <10 pixels'
  371. # verify labels
  372. if os.path.isfile(lb_file):
  373. nf += 1 # label found
  374. with open(lb_file, 'r') as f:
  375. l = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32) # labels
  376. if len(l):
  377. assert l.shape[1] == 5, 'labels require 5 columns each'
  378. assert (l >= 0).all(), 'negative labels'
  379. assert (l[:, 1:] <= 1).all(), 'non-normalized or out of bounds coordinate labels'
  380. assert np.unique(l, axis=0).shape[0] == l.shape[0], 'duplicate labels'
  381. else:
  382. ne += 1 # label empty
  383. l = np.zeros((0, 5), dtype=np.float32)
  384. else:
  385. nm += 1 # label missing
  386. l = np.zeros((0, 5), dtype=np.float32)
  387. x[im_file] = [l, shape]
  388. except Exception as e:
  389. nc += 1
  390. print('WARNING: Ignoring corrupted image and/or label %s: %s' % (im_file, e))
  391. pbar.desc = f"Scanning '{path.parent / path.stem}' for images and labels... " \
  392. f"{nf} found, {nm} missing, {ne} empty, {nc} corrupted"
  393. if nf == 0:
  394. print(f'WARNING: No labels found in {path}. See {help_url}')
  395. x['hash'] = get_hash(self.label_files + self.img_files)
  396. x['results'] = [nf, nm, ne, nc, i + 1]
  397. torch.save(x, path) # save for next time
  398. logging.info(f"New cache created: {path}")
  399. return x
  400. def __len__(self):
  401. return len(self.img_files)
  402. # def __iter__(self):
  403. # self.count = -1
  404. # print('ran dataset iter')
  405. # #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF)
  406. # return self
  407. def __getitem__(self, index):
  408. index = self.indices[index] # linear, shuffled, or image_weights
  409. hyp = self.hyp
  410. mosaic = self.mosaic and random.random() < hyp['mosaic']
  411. if mosaic:
  412. # Load mosaic
  413. img, labels = load_mosaic(self, index)
  414. shapes = None
  415. # MixUp https://arxiv.org/pdf/1710.09412.pdf
  416. if random.random() < hyp['mixup']:
  417. img2, labels2 = load_mosaic(self, random.randint(0, self.n - 1))
  418. r = np.random.beta(8.0, 8.0) # mixup ratio, alpha=beta=8.0
  419. img = (img * r + img2 * (1 - r)).astype(np.uint8)
  420. labels = np.concatenate((labels, labels2), 0)
  421. else:
  422. # Load image
  423. img, (h0, w0), (h, w) = load_image(self, index)
  424. # Letterbox
  425. shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size # final letterboxed shape
  426. img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
  427. shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling
  428. # Load labels
  429. labels = []
  430. x = self.labels[index]
  431. if x.size > 0:
  432. # Normalized xywh to pixel xyxy format
  433. labels = x.copy()
  434. labels[:, 1] = ratio[0] * w * (x[:, 1] - x[:, 3] / 2) + pad[0] # pad width
  435. labels[:, 2] = ratio[1] * h * (x[:, 2] - x[:, 4] / 2) + pad[1] # pad height
  436. labels[:, 3] = ratio[0] * w * (x[:, 1] + x[:, 3] / 2) + pad[0]
  437. labels[:, 4] = ratio[1] * h * (x[:, 2] + x[:, 4] / 2) + pad[1]
  438. if self.augment:
  439. # Augment imagespace
  440. if not mosaic:
  441. img, labels = random_perspective(img, labels,
  442. degrees=hyp['degrees'],
  443. translate=hyp['translate'],
  444. scale=hyp['scale'],
  445. shear=hyp['shear'],
  446. perspective=hyp['perspective'])
  447. # Augment colorspace
  448. augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v'])
  449. # Apply cutouts
  450. # if random.random() < 0.9:
  451. # labels = cutout(img, labels)
  452. nL = len(labels) # number of labels
  453. if nL:
  454. labels[:, 1:5] = xyxy2xywh(labels[:, 1:5]) # convert xyxy to xywh
  455. labels[:, [2, 4]] /= img.shape[0] # normalized height 0-1
  456. labels[:, [1, 3]] /= img.shape[1] # normalized width 0-1
  457. if self.augment:
  458. # flip up-down
  459. if random.random() < hyp['flipud']:
  460. img = np.flipud(img)
  461. if nL:
  462. labels[:, 2] = 1 - labels[:, 2]
  463. # flip left-right
  464. if random.random() < hyp['fliplr']:
  465. img = np.fliplr(img)
  466. if nL:
  467. labels[:, 1] = 1 - labels[:, 1]
  468. labels_out = torch.zeros((nL, 6))
  469. if nL:
  470. labels_out[:, 1:] = torch.from_numpy(labels)
  471. # Convert
  472. img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
  473. img = np.ascontiguousarray(img)
  474. return torch.from_numpy(img), labels_out, self.img_files[index], shapes
  475. @staticmethod
  476. def collate_fn(batch):
  477. img, label, path, shapes = zip(*batch) # transposed
  478. for i, l in enumerate(label):
  479. l[:, 0] = i # add target image index for build_targets()
  480. return torch.stack(img, 0), torch.cat(label, 0), path, shapes
  481. # Ancillary functions --------------------------------------------------------------------------------------------------
  482. def load_image(self, index):
  483. # loads 1 image from dataset, returns img, original hw, resized hw
  484. img = self.imgs[index]
  485. if img is None: # not cached
  486. path = self.img_files[index]
  487. img = cv2.imread(path) # BGR
  488. assert img is not None, 'Image Not Found ' + path
  489. h0, w0 = img.shape[:2] # orig hw
  490. r = self.img_size / max(h0, w0) # resize image to img_size
  491. if r != 1: # always resize down, only resize up if training with augmentation
  492. interp = cv2.INTER_AREA if r < 1 and not self.augment else cv2.INTER_LINEAR
  493. img = cv2.resize(img, (int(w0 * r), int(h0 * r)), interpolation=interp)
  494. return img, (h0, w0), img.shape[:2] # img, hw_original, hw_resized
  495. else:
  496. return self.imgs[index], self.img_hw0[index], self.img_hw[index] # img, hw_original, hw_resized
  497. def augment_hsv(img, hgain=0.5, sgain=0.5, vgain=0.5):
  498. r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains
  499. hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
  500. dtype = img.dtype # uint8
  501. x = np.arange(0, 256, dtype=np.int16)
  502. lut_hue = ((x * r[0]) % 180).astype(dtype)
  503. lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
  504. lut_val = np.clip(x * r[2], 0, 255).astype(dtype)
  505. img_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))).astype(dtype)
  506. cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed
  507. # Histogram equalization
  508. # if random.random() < 0.2:
  509. # for i in range(3):
  510. # img[:, :, i] = cv2.equalizeHist(img[:, :, i])
  511. def load_mosaic(self, index):
  512. # loads images in a mosaic
  513. labels4 = []
  514. s = self.img_size
  515. yc, xc = [int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border] # mosaic center x, y
  516. indices = [index] + [self.indices[random.randint(0, self.n - 1)] for _ in range(3)] # 3 additional image indices
  517. for i, index in enumerate(indices):
  518. # Load image
  519. img, _, (h, w) = load_image(self, index)
  520. # place img in img4
  521. if i == 0: # top left
  522. img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
  523. x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image)
  524. x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image)
  525. elif i == 1: # top right
  526. x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
  527. x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
  528. elif i == 2: # bottom left
  529. x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
  530. x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
  531. elif i == 3: # bottom right
  532. x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
  533. x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
  534. img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
  535. padw = x1a - x1b
  536. padh = y1a - y1b
  537. # Labels
  538. x = self.labels[index]
  539. labels = x.copy()
  540. if x.size > 0: # Normalized xywh to pixel xyxy format
  541. labels[:, 1] = w * (x[:, 1] - x[:, 3] / 2) + padw
  542. labels[:, 2] = h * (x[:, 2] - x[:, 4] / 2) + padh
  543. labels[:, 3] = w * (x[:, 1] + x[:, 3] / 2) + padw
  544. labels[:, 4] = h * (x[:, 2] + x[:, 4] / 2) + padh
  545. labels4.append(labels)
  546. # Concat/clip labels
  547. if len(labels4):
  548. labels4 = np.concatenate(labels4, 0)
  549. np.clip(labels4[:, 1:], 0, 2 * s, out=labels4[:, 1:]) # use with random_perspective
  550. # img4, labels4 = replicate(img4, labels4) # replicate
  551. # Augment
  552. img4, labels4 = random_perspective(img4, labels4,
  553. degrees=self.hyp['degrees'],
  554. translate=self.hyp['translate'],
  555. scale=self.hyp['scale'],
  556. shear=self.hyp['shear'],
  557. perspective=self.hyp['perspective'],
  558. border=self.mosaic_border) # border to remove
  559. return img4, labels4
  560. def replicate(img, labels):
  561. # Replicate labels
  562. h, w = img.shape[:2]
  563. boxes = labels[:, 1:].astype(int)
  564. x1, y1, x2, y2 = boxes.T
  565. s = ((x2 - x1) + (y2 - y1)) / 2 # side length (pixels)
  566. for i in s.argsort()[:round(s.size * 0.5)]: # smallest indices
  567. x1b, y1b, x2b, y2b = boxes[i]
  568. bh, bw = y2b - y1b, x2b - x1b
  569. yc, xc = int(random.uniform(0, h - bh)), int(random.uniform(0, w - bw)) # offset x, y
  570. x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh]
  571. img[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
  572. labels = np.append(labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0)
  573. return img, labels
  574. def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True):
  575. # Resize image to a 32-pixel-multiple rectangle https://github.com/ultralytics/yolov3/issues/232
  576. shape = img.shape[:2] # current shape [height, width]
  577. if isinstance(new_shape, int):
  578. new_shape = (new_shape, new_shape)
  579. # Scale ratio (new / old)
  580. r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
  581. if not scaleup: # only scale down, do not scale up (for better test mAP)
  582. r = min(r, 1.0)
  583. # Compute padding
  584. ratio = r, r # width, height ratios
  585. new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
  586. dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
  587. if auto: # minimum rectangle
  588. dw, dh = np.mod(dw, 32), np.mod(dh, 32) # wh padding
  589. elif scaleFill: # stretch
  590. dw, dh = 0.0, 0.0
  591. new_unpad = (new_shape[1], new_shape[0])
  592. ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
  593. dw /= 2 # divide padding into 2 sides
  594. dh /= 2
  595. if shape[::-1] != new_unpad: # resize
  596. img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
  597. top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
  598. left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
  599. img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
  600. return img, ratio, (dw, dh)
  601. def random_perspective(img, targets=(), degrees=10, translate=.1, scale=.1, shear=10, perspective=0.0, border=(0, 0)):
  602. # torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10))
  603. # targets = [cls, xyxy]
  604. height = img.shape[0] + border[0] * 2 # shape(h,w,c)
  605. width = img.shape[1] + border[1] * 2
  606. # Center
  607. C = np.eye(3)
  608. C[0, 2] = -img.shape[1] / 2 # x translation (pixels)
  609. C[1, 2] = -img.shape[0] / 2 # y translation (pixels)
  610. # Perspective
  611. P = np.eye(3)
  612. P[2, 0] = random.uniform(-perspective, perspective) # x perspective (about y)
  613. P[2, 1] = random.uniform(-perspective, perspective) # y perspective (about x)
  614. # Rotation and Scale
  615. R = np.eye(3)
  616. a = random.uniform(-degrees, degrees)
  617. # a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations
  618. s = random.uniform(1 - scale, 1 + scale)
  619. # s = 2 ** random.uniform(-scale, scale)
  620. R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)
  621. # Shear
  622. S = np.eye(3)
  623. S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg)
  624. S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg)
  625. # Translation
  626. T = np.eye(3)
  627. T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width # x translation (pixels)
  628. T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height # y translation (pixels)
  629. # Combined rotation matrix
  630. M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT
  631. if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed
  632. if perspective:
  633. img = cv2.warpPerspective(img, M, dsize=(width, height), borderValue=(114, 114, 114))
  634. else: # affine
  635. img = cv2.warpAffine(img, M[:2], dsize=(width, height), borderValue=(114, 114, 114))
  636. # Visualize
  637. # import matplotlib.pyplot as plt
  638. # ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel()
  639. # ax[0].imshow(img[:, :, ::-1]) # base
  640. # ax[1].imshow(img2[:, :, ::-1]) # warped
  641. # Transform label coordinates
  642. n = len(targets)
  643. if n:
  644. # warp points
  645. xy = np.ones((n * 4, 3))
  646. xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1
  647. xy = xy @ M.T # transform
  648. if perspective:
  649. xy = (xy[:, :2] / xy[:, 2:3]).reshape(n, 8) # rescale
  650. else: # affine
  651. xy = xy[:, :2].reshape(n, 8)
  652. # create new boxes
  653. x = xy[:, [0, 2, 4, 6]]
  654. y = xy[:, [1, 3, 5, 7]]
  655. xy = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
  656. # # apply angle-based reduction of bounding boxes
  657. # radians = a * math.pi / 180
  658. # reduction = max(abs(math.sin(radians)), abs(math.cos(radians))) ** 0.5
  659. # x = (xy[:, 2] + xy[:, 0]) / 2
  660. # y = (xy[:, 3] + xy[:, 1]) / 2
  661. # w = (xy[:, 2] - xy[:, 0]) * reduction
  662. # h = (xy[:, 3] - xy[:, 1]) * reduction
  663. # xy = np.concatenate((x - w / 2, y - h / 2, x + w / 2, y + h / 2)).reshape(4, n).T
  664. # clip boxes
  665. xy[:, [0, 2]] = xy[:, [0, 2]].clip(0, width)
  666. xy[:, [1, 3]] = xy[:, [1, 3]].clip(0, height)
  667. # filter candidates
  668. i = box_candidates(box1=targets[:, 1:5].T * s, box2=xy.T)
  669. targets = targets[i]
  670. targets[:, 1:5] = xy[i]
  671. return img, targets
  672. def box_candidates(box1, box2, wh_thr=2, ar_thr=20, area_thr=0.1): # box1(4,n), box2(4,n)
  673. # Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio
  674. w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
  675. w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
  676. ar = np.maximum(w2 / (h2 + 1e-16), h2 / (w2 + 1e-16)) # aspect ratio
  677. return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + 1e-16) > area_thr) & (ar < ar_thr) # candidates
  678. def cutout(image, labels):
  679. # Applies image cutout augmentation https://arxiv.org/abs/1708.04552
  680. h, w = image.shape[:2]
  681. def bbox_ioa(box1, box2):
  682. # Returns the intersection over box2 area given box1, box2. box1 is 4, box2 is nx4. boxes are x1y1x2y2
  683. box2 = box2.transpose()
  684. # Get the coordinates of bounding boxes
  685. b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
  686. b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
  687. # Intersection area
  688. inter_area = (np.minimum(b1_x2, b2_x2) - np.maximum(b1_x1, b2_x1)).clip(0) * \
  689. (np.minimum(b1_y2, b2_y2) - np.maximum(b1_y1, b2_y1)).clip(0)
  690. # box2 area
  691. box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + 1e-16
  692. # Intersection over box2 area
  693. return inter_area / box2_area
  694. # create random masks
  695. scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16 # image size fraction
  696. for s in scales:
  697. mask_h = random.randint(1, int(h * s))
  698. mask_w = random.randint(1, int(w * s))
  699. # box
  700. xmin = max(0, random.randint(0, w) - mask_w // 2)
  701. ymin = max(0, random.randint(0, h) - mask_h // 2)
  702. xmax = min(w, xmin + mask_w)
  703. ymax = min(h, ymin + mask_h)
  704. # apply random color mask
  705. image[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)]
  706. # return unobscured labels
  707. if len(labels) and s > 0.03:
  708. box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32)
  709. ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area
  710. labels = labels[ioa < 0.60] # remove >60% obscured labels
  711. return labels
  712. def create_folder(path='./new'):
  713. # Create folder
  714. if os.path.exists(path):
  715. shutil.rmtree(path) # delete output folder
  716. os.makedirs(path) # make new output folder
  717. def flatten_recursive(path='../coco128'):
  718. # Flatten a recursive directory by bringing all files to top level
  719. new_path = Path(path + '_flat')
  720. create_folder(new_path)
  721. for file in tqdm(glob.glob(str(Path(path)) + '/**/*.*', recursive=True)):
  722. shutil.copyfile(file, new_path / Path(file).name)
  723. def extract_boxes(path='../coco128/'): # from utils.datasets import *; extract_boxes('../coco128')
  724. # Convert detection dataset into classification dataset, with one directory per class
  725. path = Path(path) # images dir
  726. shutil.rmtree(path / 'classifier') if (path / 'classifier').is_dir() else None # remove existing
  727. files = list(path.rglob('*.*'))
  728. n = len(files) # number of files
  729. for im_file in tqdm(files, total=n):
  730. if im_file.suffix[1:] in img_formats:
  731. # image
  732. im = cv2.imread(str(im_file))[..., ::-1] # BGR to RGB
  733. h, w = im.shape[:2]
  734. # labels
  735. lb_file = Path(img2label_paths([str(im_file)])[0])
  736. if Path(lb_file).exists():
  737. with open(lb_file, 'r') as f:
  738. lb = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32) # labels
  739. for j, x in enumerate(lb):
  740. c = int(x[0]) # class
  741. f = (path / 'classifier') / f'{c}' / f'{path.stem}_{im_file.stem}_{j}.jpg' # new filename
  742. if not f.parent.is_dir():
  743. f.parent.mkdir(parents=True)
  744. b = x[1:] * [w, h, w, h] # box
  745. # b[2:] = b[2:].max() # rectangle to square
  746. b[2:] = b[2:] * 1.2 + 3 # pad
  747. b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(np.int)
  748. b[[0, 2]] = np.clip(b[[0, 2]], 0, w) # clip boxes outside of image
  749. b[[1, 3]] = np.clip(b[[1, 3]], 0, h)
  750. assert cv2.imwrite(str(f), im[b[1]:b[3], b[0]:b[2]]), f'box failure in {f}'
  751. def autosplit(path='../coco128', weights=(0.9, 0.1, 0.0)): # from utils.datasets import *; autosplit('../coco128')
  752. """ Autosplit a dataset into train/val/test splits and save path/autosplit_*.txt files
  753. # Arguments
  754. path: Path to images directory
  755. weights: Train, val, test weights (list)
  756. """
  757. path = Path(path) # images dir
  758. files = list(path.rglob('*.*'))
  759. n = len(files) # number of files
  760. indices = random.choices([0, 1, 2], weights=weights, k=n) # assign each image to a split
  761. txt = ['autosplit_train.txt', 'autosplit_val.txt', 'autosplit_test.txt'] # 3 txt files
  762. [(path / x).unlink() for x in txt if (path / x).exists()] # remove existing
  763. for i, img in tqdm(zip(indices, files), total=n):
  764. if img.suffix[1:] in img_formats:
  765. with open(path / txt[i], 'a') as f:
  766. f.write(str(img) + '\n') # add image to txt file