You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

datasets.py 45KB

4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
[WIP] Feature/ddp fixed (#401) * Squashed commit of the following: commit d738487089e41c22b3b1cd73aa7c1c40320a6ebf Author: NanoCode012 <kevinvong@rocketmail.com> Date: Tue Jul 14 17:33:38 2020 +0700 Adding world_size Reduce calls to torch.distributed. For use in create_dataloader. commit e742dd9619d29306c7541821238d3d7cddcdc508 Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Tue Jul 14 15:38:48 2020 +0800 Make SyncBN a choice commit e90d4004387e6103fecad745f8cbc2edc918e906 Merge: 5bf8beb cd90360 Author: yzchen <Chenyzsjtu@gmail.com> Date: Tue Jul 14 15:32:10 2020 +0800 Merge pull request #6 from NanoCode012/patch-5 Update train.py commit cd9036017e7f8bd519a8b62adab0f47ea67f4962 Author: NanoCode012 <kevinvong@rocketmail.com> Date: Tue Jul 14 13:39:29 2020 +0700 Update train.py Remove redundant `opt.` prefix. commit 5bf8bebe8873afb18b762fe1f409aca116fac073 Merge: c9558a9 a1c8406 Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Tue Jul 14 14:09:51 2020 +0800 Merge branch 'master' of https://github.com/ultralytics/yolov5 into feature/DDP_fixed commit c9558a9b51547febb03d9c1ca42e2ef0fc15bb31 Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Tue Jul 14 13:51:34 2020 +0800 Add device allocation for loss compute commit 4f08c692fb5e943a89e0ee354ef6c80a50eeb28d Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Thu Jul 9 11:16:27 2020 +0800 Revert drop_last commit 1dabe33a5a223b758cc761fc8741c6224205a34b Merge: a1ce9b1 4b8450b Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Thu Jul 9 11:15:49 2020 +0800 Merge branch 'feature/DDP_fixed' of https://github.com/MagicFrogSJTU/yolov5 into feature/DDP_fixed commit a1ce9b1e96b71d7fcb9d3e8143013eb8cebe5e27 Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Thu Jul 9 11:15:21 2020 +0800 fix lr warning commit 4b8450b46db76e5e58cd95df965d4736077cfb0e Merge: b9a50ae 02c63ef Author: yzchen <Chenyzsjtu@gmail.com> Date: Wed Jul 8 21:24:24 2020 +0800 Merge pull request #4 from NanoCode012/patch-4 Add drop_last for multi gpu commit 02c63ef81cf98b28b10344fe2cce08a03b143941 Author: NanoCode012 <kevinvong@rocketmail.com> Date: Wed Jul 8 10:08:30 2020 +0700 Add drop_last for multi gpu commit b9a50aed48ab1536f94d49269977e2accd67748f Merge: ec2dc6c 121d90b Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Tue Jul 7 19:48:04 2020 +0800 Merge branch 'master' of https://github.com/ultralytics/yolov5 into feature/DDP_fixed commit ec2dc6cc56de43ddff939e14c450672d0fbf9b3d Merge: d0326e3 82a6182 Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Tue Jul 7 19:34:31 2020 +0800 Merge branch 'feature/DDP_fixed' of https://github.com/MagicFrogSJTU/yolov5 into feature/DDP_fixed commit d0326e398dfeeeac611ccc64198d4fe91b7aa969 Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Tue Jul 7 19:31:24 2020 +0800 Add SyncBN commit 82a6182b3ad0689a4432b631b438004e5acb3b74 Merge: 96fa40a 050b2a5 Author: yzchen <Chenyzsjtu@gmail.com> Date: Tue Jul 7 19:21:01 2020 +0800 Merge pull request #1 from NanoCode012/patch-2 Convert BatchNorm to SyncBatchNorm commit 050b2a5a79a89c9405854d439a1f70f892139b1c Author: NanoCode012 <kevinvong@rocketmail.com> Date: Tue Jul 7 12:38:14 2020 +0700 Add cleanup for process_group commit 2aa330139f3cc1237aeb3132245ed7e5d6da1683 Author: NanoCode012 <kevinvong@rocketmail.com> Date: Tue Jul 7 12:07:40 2020 +0700 Remove apex.parallel. Use torch.nn.parallel For future compatibility commit 77c8e27e603bea9a69e7647587ca8d509dc1990d Author: NanoCode012 <kevinvong@rocketmail.com> Date: Tue Jul 7 01:54:39 2020 +0700 Convert BatchNorm to SyncBatchNorm commit 96fa40a3a925e4ffd815fe329e1b5181ec92adc8 Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Mon Jul 6 21:53:56 2020 +0800 Fix the datset inconsistency problem commit 16e7c269d062c8d16c4d4ff70cc80fd87935dc95 Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Mon Jul 6 11:34:03 2020 +0800 Add loss multiplication to preserver the single-process performance commit e83805563065ffd2e38f85abe008fc662cc17909 Merge: 625bb49 3bdea3f Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Fri Jul 3 20:56:30 2020 +0800 Merge branch 'master' of https://github.com/ultralytics/yolov5 into feature/DDP_fixed commit 625bb49f4e52d781143fea0af36d14e5be8b040c Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Thu Jul 2 22:45:15 2020 +0800 DDP established * Squashed commit of the following: commit 94147314e559a6bdd13cb9de62490d385c27596f Merge: 65157e2 37acbdc Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Thu Jul 16 14:00:17 2020 +0800 Merge branch 'master' of https://github.com/ultralytics/yolov4 into feature/DDP_fixed commit 37acbdc0b6ef8c3343560834b914c83bbb0abbd1 Author: Glenn Jocher <glenn.jocher@ultralytics.com> Date: Wed Jul 15 20:03:41 2020 -0700 update test.py --save-txt commit b8c2da4a0d6880afd7857207340706666071145b Author: Glenn Jocher <glenn.jocher@ultralytics.com> Date: Wed Jul 15 20:00:48 2020 -0700 update test.py --save-txt commit 65157e2fc97d371bc576e18b424e130eb3026917 Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Wed Jul 15 16:44:13 2020 +0800 Revert the README.md removal commit 1c802bfa503623661d8617ca3f259835d27c5345 Merge: cd55b44 0f3b8bb Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Wed Jul 15 16:43:38 2020 +0800 Merge branch 'feature/DDP_fixed' of https://github.com/MagicFrogSJTU/yolov5 into feature/DDP_fixed commit cd55b445c4dcd8003ff4b0b46b64adf7c16e5ce7 Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Wed Jul 15 16:42:33 2020 +0800 fix the DDP performance deterioration bug. commit 0f3b8bb1fae5885474ba861bbbd1924fb622ee93 Author: Glenn Jocher <glenn.jocher@ultralytics.com> Date: Wed Jul 15 00:28:53 2020 -0700 Delete README.md commit f5921ba1e35475f24b062456a890238cb7a3cf94 Merge: 85ab2f3 bd3fdbb Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Wed Jul 15 11:20:17 2020 +0800 Merge branch 'feature/DDP_fixed' of https://github.com/MagicFrogSJTU/yolov5 into feature/DDP_fixed commit bd3fdbbf1b08ef87931eef49fa8340621caa7e87 Author: Glenn Jocher <glenn.jocher@ultralytics.com> Date: Tue Jul 14 18:38:20 2020 -0700 Update README.md commit c1a97a7767ccb2aa9afc7a5e72fd159e7c62ec02 Merge: 2bf86b8 f796708 Author: Glenn Jocher <glenn.jocher@ultralytics.com> Date: Tue Jul 14 18:36:53 2020 -0700 Merge branch 'master' into feature/DDP_fixed commit 2bf86b892fa2fd712f6530903a0d9b8533d7447a Author: NanoCode012 <kevinvong@rocketmail.com> Date: Tue Jul 14 22:18:15 2020 +0700 Fixed world_size not found when called from test commit 85ab2f38cdda28b61ad15a3a5a14c3aafb620dc8 Merge: 5a19011 c8357ad Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Tue Jul 14 22:19:58 2020 +0800 Merge branch 'feature/DDP_fixed' of https://github.com/MagicFrogSJTU/yolov5 into feature/DDP_fixed commit 5a19011949398d06e744d8d5521ab4e6dfa06ab7 Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Tue Jul 14 22:19:15 2020 +0800 Add assertion for <=2 gpus DDP commit c8357ad5b15a0e6aeef4d7fe67ca9637f7322a4d Merge: e742dd9 787582f Author: yzchen <Chenyzsjtu@gmail.com> Date: Tue Jul 14 22:10:02 2020 +0800 Merge pull request #8 from MagicFrogSJTU/NanoCode012-patch-1 Modify number of dataloaders' workers commit 787582f97251834f955ef05a77072b8c673a8397 Author: NanoCode012 <kevinvong@rocketmail.com> Date: Tue Jul 14 20:38:58 2020 +0700 Fixed issue with single gpu not having world_size commit 63648925288d63a21174a4dd28f92dbfebfeb75a Author: NanoCode012 <kevinvong@rocketmail.com> Date: Tue Jul 14 19:16:15 2020 +0700 Add assert message for clarification Clarify why assertion was thrown to users commit 69364d6050e048d0d8834e0f30ce84da3f6a13f3 Author: NanoCode012 <kevinvong@rocketmail.com> Date: Tue Jul 14 17:36:48 2020 +0700 Changed number of workers check commit d738487089e41c22b3b1cd73aa7c1c40320a6ebf Author: NanoCode012 <kevinvong@rocketmail.com> Date: Tue Jul 14 17:33:38 2020 +0700 Adding world_size Reduce calls to torch.distributed. For use in create_dataloader. commit e742dd9619d29306c7541821238d3d7cddcdc508 Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Tue Jul 14 15:38:48 2020 +0800 Make SyncBN a choice commit e90d4004387e6103fecad745f8cbc2edc918e906 Merge: 5bf8beb cd90360 Author: yzchen <Chenyzsjtu@gmail.com> Date: Tue Jul 14 15:32:10 2020 +0800 Merge pull request #6 from NanoCode012/patch-5 Update train.py commit cd9036017e7f8bd519a8b62adab0f47ea67f4962 Author: NanoCode012 <kevinvong@rocketmail.com> Date: Tue Jul 14 13:39:29 2020 +0700 Update train.py Remove redundant `opt.` prefix. commit 5bf8bebe8873afb18b762fe1f409aca116fac073 Merge: c9558a9 a1c8406 Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Tue Jul 14 14:09:51 2020 +0800 Merge branch 'master' of https://github.com/ultralytics/yolov5 into feature/DDP_fixed commit c9558a9b51547febb03d9c1ca42e2ef0fc15bb31 Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Tue Jul 14 13:51:34 2020 +0800 Add device allocation for loss compute commit 4f08c692fb5e943a89e0ee354ef6c80a50eeb28d Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Thu Jul 9 11:16:27 2020 +0800 Revert drop_last commit 1dabe33a5a223b758cc761fc8741c6224205a34b Merge: a1ce9b1 4b8450b Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Thu Jul 9 11:15:49 2020 +0800 Merge branch 'feature/DDP_fixed' of https://github.com/MagicFrogSJTU/yolov5 into feature/DDP_fixed commit a1ce9b1e96b71d7fcb9d3e8143013eb8cebe5e27 Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Thu Jul 9 11:15:21 2020 +0800 fix lr warning commit 4b8450b46db76e5e58cd95df965d4736077cfb0e Merge: b9a50ae 02c63ef Author: yzchen <Chenyzsjtu@gmail.com> Date: Wed Jul 8 21:24:24 2020 +0800 Merge pull request #4 from NanoCode012/patch-4 Add drop_last for multi gpu commit 02c63ef81cf98b28b10344fe2cce08a03b143941 Author: NanoCode012 <kevinvong@rocketmail.com> Date: Wed Jul 8 10:08:30 2020 +0700 Add drop_last for multi gpu commit b9a50aed48ab1536f94d49269977e2accd67748f Merge: ec2dc6c 121d90b Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Tue Jul 7 19:48:04 2020 +0800 Merge branch 'master' of https://github.com/ultralytics/yolov5 into feature/DDP_fixed commit ec2dc6cc56de43ddff939e14c450672d0fbf9b3d Merge: d0326e3 82a6182 Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Tue Jul 7 19:34:31 2020 +0800 Merge branch 'feature/DDP_fixed' of https://github.com/MagicFrogSJTU/yolov5 into feature/DDP_fixed commit d0326e398dfeeeac611ccc64198d4fe91b7aa969 Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Tue Jul 7 19:31:24 2020 +0800 Add SyncBN commit 82a6182b3ad0689a4432b631b438004e5acb3b74 Merge: 96fa40a 050b2a5 Author: yzchen <Chenyzsjtu@gmail.com> Date: Tue Jul 7 19:21:01 2020 +0800 Merge pull request #1 from NanoCode012/patch-2 Convert BatchNorm to SyncBatchNorm commit 050b2a5a79a89c9405854d439a1f70f892139b1c Author: NanoCode012 <kevinvong@rocketmail.com> Date: Tue Jul 7 12:38:14 2020 +0700 Add cleanup for process_group commit 2aa330139f3cc1237aeb3132245ed7e5d6da1683 Author: NanoCode012 <kevinvong@rocketmail.com> Date: Tue Jul 7 12:07:40 2020 +0700 Remove apex.parallel. Use torch.nn.parallel For future compatibility commit 77c8e27e603bea9a69e7647587ca8d509dc1990d Author: NanoCode012 <kevinvong@rocketmail.com> Date: Tue Jul 7 01:54:39 2020 +0700 Convert BatchNorm to SyncBatchNorm commit 96fa40a3a925e4ffd815fe329e1b5181ec92adc8 Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Mon Jul 6 21:53:56 2020 +0800 Fix the datset inconsistency problem commit 16e7c269d062c8d16c4d4ff70cc80fd87935dc95 Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Mon Jul 6 11:34:03 2020 +0800 Add loss multiplication to preserver the single-process performance commit e83805563065ffd2e38f85abe008fc662cc17909 Merge: 625bb49 3bdea3f Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Fri Jul 3 20:56:30 2020 +0800 Merge branch 'master' of https://github.com/ultralytics/yolov5 into feature/DDP_fixed commit 625bb49f4e52d781143fea0af36d14e5be8b040c Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Thu Jul 2 22:45:15 2020 +0800 DDP established * Fixed destroy_process_group in DP mode * Update torch_utils.py * Update utils.py Revert build_targets() to current master. * Update datasets.py * Fixed world_size attribute not found Co-authored-by: NanoCode012 <kevinvong@rocketmail.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
4 yıl önce
Add TensorFlow and TFLite export (#1127) * Add models/tf.py for TensorFlow and TFLite export * Set auto=False for int8 calibration * Update requirements.txt for TensorFlow and TFLite export * Read anchors directly from PyTorch weights * Add --tf-nms to append NMS in TensorFlow SavedModel and GraphDef export * Remove check_anchor_order, check_file, set_logging from import * Reformat code and optimize imports * Autodownload model and check cfg * update --source path, img-size to 320, single output * Adjust representative_dataset * Put representative dataset in tfl_int8 block * detect.py TF inference * weights to string * weights to string * cleanup tf.py * Add --dynamic-batch-size * Add xywh normalization to reduce calibration error * Update requirements.txt TensorFlow 2.3.1 -> 2.4.0 to avoid int8 quantization error * Fix imports Move C3 from models.experimental to models.common * Add models/tf.py for TensorFlow and TFLite export * Set auto=False for int8 calibration * Update requirements.txt for TensorFlow and TFLite export * Read anchors directly from PyTorch weights * Add --tf-nms to append NMS in TensorFlow SavedModel and GraphDef export * Remove check_anchor_order, check_file, set_logging from import * Reformat code and optimize imports * Autodownload model and check cfg * update --source path, img-size to 320, single output * Adjust representative_dataset * detect.py TF inference * Put representative dataset in tfl_int8 block * weights to string * weights to string * cleanup tf.py * Add --dynamic-batch-size * Add xywh normalization to reduce calibration error * Update requirements.txt TensorFlow 2.3.1 -> 2.4.0 to avoid int8 quantization error * Fix imports Move C3 from models.experimental to models.common * implement C3() and SiLU() * Fix reshape dim to support dynamic batching * Add epsilon argument in tf_BN, which is different between TF and PT * Set stride to None if not using PyTorch, and do not warmup without PyTorch * Add list support in check_img_size() * Add list input support in detect.py * sys.path.append('./') to run from yolov5/ * Add int8 quantization support for TensorFlow 2.5 * Add get_coco128.sh * Remove --no-tfl-detect in models/tf.py (Use tf-android-tfl-detect branch for EdgeTPU) * Update requirements.txt * Replace torch.load() with attempt_load() * Update requirements.txt * Add --tf-raw-resize to set half_pixel_centers=False * Add --agnostic-nms for TF class-agnostic NMS * Cleanup after merge * Cleanup2 after merge * Cleanup3 after merge * Add tf.py docstring with credit and usage * pb saved_model and tflite use only one model in detect.py * Add use cases in docstring of tf.py * Remove redundant `stride` definition * Remove keras direct import * Fix `check_requirements(('tensorflow>=2.4.1',))` Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
3 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
Add TensorFlow and TFLite export (#1127) * Add models/tf.py for TensorFlow and TFLite export * Set auto=False for int8 calibration * Update requirements.txt for TensorFlow and TFLite export * Read anchors directly from PyTorch weights * Add --tf-nms to append NMS in TensorFlow SavedModel and GraphDef export * Remove check_anchor_order, check_file, set_logging from import * Reformat code and optimize imports * Autodownload model and check cfg * update --source path, img-size to 320, single output * Adjust representative_dataset * Put representative dataset in tfl_int8 block * detect.py TF inference * weights to string * weights to string * cleanup tf.py * Add --dynamic-batch-size * Add xywh normalization to reduce calibration error * Update requirements.txt TensorFlow 2.3.1 -> 2.4.0 to avoid int8 quantization error * Fix imports Move C3 from models.experimental to models.common * Add models/tf.py for TensorFlow and TFLite export * Set auto=False for int8 calibration * Update requirements.txt for TensorFlow and TFLite export * Read anchors directly from PyTorch weights * Add --tf-nms to append NMS in TensorFlow SavedModel and GraphDef export * Remove check_anchor_order, check_file, set_logging from import * Reformat code and optimize imports * Autodownload model and check cfg * update --source path, img-size to 320, single output * Adjust representative_dataset * detect.py TF inference * Put representative dataset in tfl_int8 block * weights to string * weights to string * cleanup tf.py * Add --dynamic-batch-size * Add xywh normalization to reduce calibration error * Update requirements.txt TensorFlow 2.3.1 -> 2.4.0 to avoid int8 quantization error * Fix imports Move C3 from models.experimental to models.common * implement C3() and SiLU() * Fix reshape dim to support dynamic batching * Add epsilon argument in tf_BN, which is different between TF and PT * Set stride to None if not using PyTorch, and do not warmup without PyTorch * Add list support in check_img_size() * Add list input support in detect.py * sys.path.append('./') to run from yolov5/ * Add int8 quantization support for TensorFlow 2.5 * Add get_coco128.sh * Remove --no-tfl-detect in models/tf.py (Use tf-android-tfl-detect branch for EdgeTPU) * Update requirements.txt * Replace torch.load() with attempt_load() * Update requirements.txt * Add --tf-raw-resize to set half_pixel_centers=False * Add --agnostic-nms for TF class-agnostic NMS * Cleanup after merge * Cleanup2 after merge * Cleanup3 after merge * Add tf.py docstring with credit and usage * pb saved_model and tflite use only one model in detect.py * Add use cases in docstring of tf.py * Remove redundant `stride` definition * Remove keras direct import * Fix `check_requirements(('tensorflow>=2.4.1',))` Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
3 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
Add TensorFlow and TFLite export (#1127) * Add models/tf.py for TensorFlow and TFLite export * Set auto=False for int8 calibration * Update requirements.txt for TensorFlow and TFLite export * Read anchors directly from PyTorch weights * Add --tf-nms to append NMS in TensorFlow SavedModel and GraphDef export * Remove check_anchor_order, check_file, set_logging from import * Reformat code and optimize imports * Autodownload model and check cfg * update --source path, img-size to 320, single output * Adjust representative_dataset * Put representative dataset in tfl_int8 block * detect.py TF inference * weights to string * weights to string * cleanup tf.py * Add --dynamic-batch-size * Add xywh normalization to reduce calibration error * Update requirements.txt TensorFlow 2.3.1 -> 2.4.0 to avoid int8 quantization error * Fix imports Move C3 from models.experimental to models.common * Add models/tf.py for TensorFlow and TFLite export * Set auto=False for int8 calibration * Update requirements.txt for TensorFlow and TFLite export * Read anchors directly from PyTorch weights * Add --tf-nms to append NMS in TensorFlow SavedModel and GraphDef export * Remove check_anchor_order, check_file, set_logging from import * Reformat code and optimize imports * Autodownload model and check cfg * update --source path, img-size to 320, single output * Adjust representative_dataset * detect.py TF inference * Put representative dataset in tfl_int8 block * weights to string * weights to string * cleanup tf.py * Add --dynamic-batch-size * Add xywh normalization to reduce calibration error * Update requirements.txt TensorFlow 2.3.1 -> 2.4.0 to avoid int8 quantization error * Fix imports Move C3 from models.experimental to models.common * implement C3() and SiLU() * Fix reshape dim to support dynamic batching * Add epsilon argument in tf_BN, which is different between TF and PT * Set stride to None if not using PyTorch, and do not warmup without PyTorch * Add list support in check_img_size() * Add list input support in detect.py * sys.path.append('./') to run from yolov5/ * Add int8 quantization support for TensorFlow 2.5 * Add get_coco128.sh * Remove --no-tfl-detect in models/tf.py (Use tf-android-tfl-detect branch for EdgeTPU) * Update requirements.txt * Replace torch.load() with attempt_load() * Update requirements.txt * Add --tf-raw-resize to set half_pixel_centers=False * Add --agnostic-nms for TF class-agnostic NMS * Cleanup after merge * Cleanup2 after merge * Cleanup3 after merge * Add tf.py docstring with credit and usage * pb saved_model and tflite use only one model in detect.py * Add use cases in docstring of tf.py * Remove redundant `stride` definition * Remove keras direct import * Fix `check_requirements(('tensorflow>=2.4.1',))` Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
3 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
Add TensorFlow and TFLite export (#1127) * Add models/tf.py for TensorFlow and TFLite export * Set auto=False for int8 calibration * Update requirements.txt for TensorFlow and TFLite export * Read anchors directly from PyTorch weights * Add --tf-nms to append NMS in TensorFlow SavedModel and GraphDef export * Remove check_anchor_order, check_file, set_logging from import * Reformat code and optimize imports * Autodownload model and check cfg * update --source path, img-size to 320, single output * Adjust representative_dataset * Put representative dataset in tfl_int8 block * detect.py TF inference * weights to string * weights to string * cleanup tf.py * Add --dynamic-batch-size * Add xywh normalization to reduce calibration error * Update requirements.txt TensorFlow 2.3.1 -> 2.4.0 to avoid int8 quantization error * Fix imports Move C3 from models.experimental to models.common * Add models/tf.py for TensorFlow and TFLite export * Set auto=False for int8 calibration * Update requirements.txt for TensorFlow and TFLite export * Read anchors directly from PyTorch weights * Add --tf-nms to append NMS in TensorFlow SavedModel and GraphDef export * Remove check_anchor_order, check_file, set_logging from import * Reformat code and optimize imports * Autodownload model and check cfg * update --source path, img-size to 320, single output * Adjust representative_dataset * detect.py TF inference * Put representative dataset in tfl_int8 block * weights to string * weights to string * cleanup tf.py * Add --dynamic-batch-size * Add xywh normalization to reduce calibration error * Update requirements.txt TensorFlow 2.3.1 -> 2.4.0 to avoid int8 quantization error * Fix imports Move C3 from models.experimental to models.common * implement C3() and SiLU() * Fix reshape dim to support dynamic batching * Add epsilon argument in tf_BN, which is different between TF and PT * Set stride to None if not using PyTorch, and do not warmup without PyTorch * Add list support in check_img_size() * Add list input support in detect.py * sys.path.append('./') to run from yolov5/ * Add int8 quantization support for TensorFlow 2.5 * Add get_coco128.sh * Remove --no-tfl-detect in models/tf.py (Use tf-android-tfl-detect branch for EdgeTPU) * Update requirements.txt * Replace torch.load() with attempt_load() * Update requirements.txt * Add --tf-raw-resize to set half_pixel_centers=False * Add --agnostic-nms for TF class-agnostic NMS * Cleanup after merge * Cleanup2 after merge * Cleanup3 after merge * Add tf.py docstring with credit and usage * pb saved_model and tflite use only one model in detect.py * Add use cases in docstring of tf.py * Remove redundant `stride` definition * Remove keras direct import * Fix `check_requirements(('tensorflow>=2.4.1',))` Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
3 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
Add TensorFlow and TFLite export (#1127) * Add models/tf.py for TensorFlow and TFLite export * Set auto=False for int8 calibration * Update requirements.txt for TensorFlow and TFLite export * Read anchors directly from PyTorch weights * Add --tf-nms to append NMS in TensorFlow SavedModel and GraphDef export * Remove check_anchor_order, check_file, set_logging from import * Reformat code and optimize imports * Autodownload model and check cfg * update --source path, img-size to 320, single output * Adjust representative_dataset * Put representative dataset in tfl_int8 block * detect.py TF inference * weights to string * weights to string * cleanup tf.py * Add --dynamic-batch-size * Add xywh normalization to reduce calibration error * Update requirements.txt TensorFlow 2.3.1 -> 2.4.0 to avoid int8 quantization error * Fix imports Move C3 from models.experimental to models.common * Add models/tf.py for TensorFlow and TFLite export * Set auto=False for int8 calibration * Update requirements.txt for TensorFlow and TFLite export * Read anchors directly from PyTorch weights * Add --tf-nms to append NMS in TensorFlow SavedModel and GraphDef export * Remove check_anchor_order, check_file, set_logging from import * Reformat code and optimize imports * Autodownload model and check cfg * update --source path, img-size to 320, single output * Adjust representative_dataset * detect.py TF inference * Put representative dataset in tfl_int8 block * weights to string * weights to string * cleanup tf.py * Add --dynamic-batch-size * Add xywh normalization to reduce calibration error * Update requirements.txt TensorFlow 2.3.1 -> 2.4.0 to avoid int8 quantization error * Fix imports Move C3 from models.experimental to models.common * implement C3() and SiLU() * Fix reshape dim to support dynamic batching * Add epsilon argument in tf_BN, which is different between TF and PT * Set stride to None if not using PyTorch, and do not warmup without PyTorch * Add list support in check_img_size() * Add list input support in detect.py * sys.path.append('./') to run from yolov5/ * Add int8 quantization support for TensorFlow 2.5 * Add get_coco128.sh * Remove --no-tfl-detect in models/tf.py (Use tf-android-tfl-detect branch for EdgeTPU) * Update requirements.txt * Replace torch.load() with attempt_load() * Update requirements.txt * Add --tf-raw-resize to set half_pixel_centers=False * Add --agnostic-nms for TF class-agnostic NMS * Cleanup after merge * Cleanup2 after merge * Cleanup3 after merge * Add tf.py docstring with credit and usage * pb saved_model and tflite use only one model in detect.py * Add use cases in docstring of tf.py * Remove redundant `stride` definition * Remove keras direct import * Fix `check_requirements(('tensorflow>=2.4.1',))` Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
3 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
Add TensorFlow and TFLite export (#1127) * Add models/tf.py for TensorFlow and TFLite export * Set auto=False for int8 calibration * Update requirements.txt for TensorFlow and TFLite export * Read anchors directly from PyTorch weights * Add --tf-nms to append NMS in TensorFlow SavedModel and GraphDef export * Remove check_anchor_order, check_file, set_logging from import * Reformat code and optimize imports * Autodownload model and check cfg * update --source path, img-size to 320, single output * Adjust representative_dataset * Put representative dataset in tfl_int8 block * detect.py TF inference * weights to string * weights to string * cleanup tf.py * Add --dynamic-batch-size * Add xywh normalization to reduce calibration error * Update requirements.txt TensorFlow 2.3.1 -> 2.4.0 to avoid int8 quantization error * Fix imports Move C3 from models.experimental to models.common * Add models/tf.py for TensorFlow and TFLite export * Set auto=False for int8 calibration * Update requirements.txt for TensorFlow and TFLite export * Read anchors directly from PyTorch weights * Add --tf-nms to append NMS in TensorFlow SavedModel and GraphDef export * Remove check_anchor_order, check_file, set_logging from import * Reformat code and optimize imports * Autodownload model and check cfg * update --source path, img-size to 320, single output * Adjust representative_dataset * detect.py TF inference * Put representative dataset in tfl_int8 block * weights to string * weights to string * cleanup tf.py * Add --dynamic-batch-size * Add xywh normalization to reduce calibration error * Update requirements.txt TensorFlow 2.3.1 -> 2.4.0 to avoid int8 quantization error * Fix imports Move C3 from models.experimental to models.common * implement C3() and SiLU() * Fix reshape dim to support dynamic batching * Add epsilon argument in tf_BN, which is different between TF and PT * Set stride to None if not using PyTorch, and do not warmup without PyTorch * Add list support in check_img_size() * Add list input support in detect.py * sys.path.append('./') to run from yolov5/ * Add int8 quantization support for TensorFlow 2.5 * Add get_coco128.sh * Remove --no-tfl-detect in models/tf.py (Use tf-android-tfl-detect branch for EdgeTPU) * Update requirements.txt * Replace torch.load() with attempt_load() * Update requirements.txt * Add --tf-raw-resize to set half_pixel_centers=False * Add --agnostic-nms for TF class-agnostic NMS * Cleanup after merge * Cleanup2 after merge * Cleanup3 after merge * Add tf.py docstring with credit and usage * pb saved_model and tflite use only one model in detect.py * Add use cases in docstring of tf.py * Remove redundant `stride` definition * Remove keras direct import * Fix `check_requirements(('tensorflow>=2.4.1',))` Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
3 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
YOLOv5 Segmentation Dataloader Updates (#2188) * Update C3 module * Update C3 module * Update C3 module * Update C3 module * update * update * update * update * update * update * update * update * update * updates * updates * updates * updates * updates * updates * updates * updates * updates * updates * update * update * update * update * updates * updates * updates * updates * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update datasets * update * update * update * update attempt_downlaod() * merge * merge * update * update * update * update * update * update * update * update * update * update * parameterize eps * comments * gs-multiple * update * max_nms implemented * Create one_cycle() function * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * GitHub API rate limit fix * update * ComputeLoss * ComputeLoss * ComputeLoss * ComputeLoss * ComputeLoss * ComputeLoss * ComputeLoss * ComputeLoss * ComputeLoss * ComputeLoss * ComputeLoss * astuple * epochs * update * update * ComputeLoss() * update * update * update * update * update * update * update * update * update * update * update * merge * merge * merge * merge * update * update * update * update * commit=tag == tags[-1] * Update cudnn.benchmark * update * update * update * updates * updates * updates * updates * updates * updates * updates * update * update * update * update * update * mosaic9 * update * update * update * update * update * update * institute cache versioning * only display on existing cache * reverse cache exists booleans
3 yıl önce
YOLOv5 Segmentation Dataloader Updates (#2188) * Update C3 module * Update C3 module * Update C3 module * Update C3 module * update * update * update * update * update * update * update * update * update * updates * updates * updates * updates * updates * updates * updates * updates * updates * updates * update * update * update * update * updates * updates * updates * updates * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update datasets * update * update * update * update attempt_downlaod() * merge * merge * update * update * update * update * update * update * update * update * update * update * parameterize eps * comments * gs-multiple * update * max_nms implemented * Create one_cycle() function * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * GitHub API rate limit fix * update * ComputeLoss * ComputeLoss * ComputeLoss * ComputeLoss * ComputeLoss * ComputeLoss * ComputeLoss * ComputeLoss * ComputeLoss * ComputeLoss * ComputeLoss * astuple * epochs * update * update * ComputeLoss() * update * update * update * update * update * update * update * update * update * update * update * merge * merge * merge * merge * update * update * update * update * commit=tag == tags[-1] * Update cudnn.benchmark * update * update * update * updates * updates * updates * updates * updates * updates * updates * update * update * update * update * update * mosaic9 * update * update * update * update * update * update * institute cache versioning * only display on existing cache * reverse cache exists booleans
3 yıl önce
YOLOv5 Segmentation Dataloader Updates (#2188) * Update C3 module * Update C3 module * Update C3 module * Update C3 module * update * update * update * update * update * update * update * update * update * updates * updates * updates * updates * updates * updates * updates * updates * updates * updates * update * update * update * update * updates * updates * updates * updates * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update datasets * update * update * update * update attempt_downlaod() * merge * merge * update * update * update * update * update * update * update * update * update * update * parameterize eps * comments * gs-multiple * update * max_nms implemented * Create one_cycle() function * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * GitHub API rate limit fix * update * ComputeLoss * ComputeLoss * ComputeLoss * ComputeLoss * ComputeLoss * ComputeLoss * ComputeLoss * ComputeLoss * ComputeLoss * ComputeLoss * ComputeLoss * astuple * epochs * update * update * ComputeLoss() * update * update * update * update * update * update * update * update * update * update * update * merge * merge * merge * merge * update * update * update * update * commit=tag == tags[-1] * Update cudnn.benchmark * update * update * update * updates * updates * updates * updates * updates * updates * updates * update * update * update * update * update * mosaic9 * update * update * update * update * update * update * institute cache versioning * only display on existing cache * reverse cache exists booleans
3 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038
  1. # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
  2. """
  3. Dataloaders and dataset utils
  4. """
  5. import glob
  6. import hashlib
  7. import json
  8. import math
  9. import os
  10. import random
  11. import shutil
  12. import time
  13. from itertools import repeat
  14. from multiprocessing.pool import Pool, ThreadPool
  15. from pathlib import Path
  16. from threading import Thread
  17. from urllib.parse import urlparse
  18. from zipfile import ZipFile
  19. import numpy as np
  20. import torch
  21. import torch.nn.functional as F
  22. import yaml
  23. from PIL import ExifTags, Image, ImageOps
  24. from torch.utils.data import DataLoader, Dataset, dataloader, distributed
  25. from tqdm import tqdm
  26. from utils.augmentations import Albumentations, augment_hsv, copy_paste, letterbox, mixup, random_perspective
  27. from utils.general import (DATASETS_DIR, LOGGER, NUM_THREADS, check_dataset, check_requirements, check_yaml, clean_str,
  28. cv2, segments2boxes, xyn2xy, xywh2xyxy, xywhn2xyxy, xyxy2xywhn)
  29. from utils.torch_utils import torch_distributed_zero_first
  30. # Parameters
  31. HELP_URL = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data'
  32. IMG_FORMATS = 'bmp', 'dng', 'jpeg', 'jpg', 'mpo', 'png', 'tif', 'tiff', 'webp' # include image suffixes
  33. VID_FORMATS = 'asf', 'avi', 'gif', 'm4v', 'mkv', 'mov', 'mp4', 'mpeg', 'mpg', 'ts', 'wmv' # include video suffixes
  34. BAR_FORMAT = '{l_bar}{bar:10}{r_bar}{bar:-10b}' # tqdm bar format
  35. # Get orientation exif tag
  36. for orientation in ExifTags.TAGS.keys():
  37. if ExifTags.TAGS[orientation] == 'Orientation':
  38. break
  39. def get_hash(paths):
  40. # Returns a single hash value of a list of paths (files or dirs)
  41. size = sum(os.path.getsize(p) for p in paths if os.path.exists(p)) # sizes
  42. h = hashlib.md5(str(size).encode()) # hash sizes
  43. h.update(''.join(paths).encode()) # hash paths
  44. return h.hexdigest() # return hash
  45. def exif_size(img):
  46. # Returns exif-corrected PIL size
  47. s = img.size # (width, height)
  48. try:
  49. rotation = dict(img._getexif().items())[orientation]
  50. if rotation == 6: # rotation 270
  51. s = (s[1], s[0])
  52. elif rotation == 8: # rotation 90
  53. s = (s[1], s[0])
  54. except Exception:
  55. pass
  56. return s
  57. def exif_transpose(image):
  58. """
  59. Transpose a PIL image accordingly if it has an EXIF Orientation tag.
  60. Inplace version of https://github.com/python-pillow/Pillow/blob/master/src/PIL/ImageOps.py exif_transpose()
  61. :param image: The image to transpose.
  62. :return: An image.
  63. """
  64. exif = image.getexif()
  65. orientation = exif.get(0x0112, 1) # default 1
  66. if orientation > 1:
  67. method = {2: Image.FLIP_LEFT_RIGHT,
  68. 3: Image.ROTATE_180,
  69. 4: Image.FLIP_TOP_BOTTOM,
  70. 5: Image.TRANSPOSE,
  71. 6: Image.ROTATE_270,
  72. 7: Image.TRANSVERSE,
  73. 8: Image.ROTATE_90,
  74. }.get(orientation)
  75. if method is not None:
  76. image = image.transpose(method)
  77. del exif[0x0112]
  78. image.info["exif"] = exif.tobytes()
  79. return image
  80. def create_dataloader(path, imgsz, batch_size, stride, single_cls=False, hyp=None, augment=False, cache=False, pad=0.0,
  81. rect=False, rank=-1, workers=8, image_weights=False, quad=False, prefix='', shuffle=False):
  82. if rect and shuffle:
  83. LOGGER.warning('WARNING: --rect is incompatible with DataLoader shuffle, setting shuffle=False')
  84. shuffle = False
  85. with torch_distributed_zero_first(rank): # init dataset *.cache only once if DDP
  86. dataset = LoadImagesAndLabels(path, imgsz, batch_size,
  87. augment=augment, # augmentation
  88. hyp=hyp, # hyperparameters
  89. rect=rect, # rectangular batches
  90. cache_images=cache,
  91. single_cls=single_cls,
  92. stride=int(stride),
  93. pad=pad,
  94. image_weights=image_weights,
  95. prefix=prefix)
  96. batch_size = min(batch_size, len(dataset))
  97. nd = torch.cuda.device_count() # number of CUDA devices
  98. nw = min([os.cpu_count() // max(nd, 1), batch_size if batch_size > 1 else 0, workers]) # number of workers
  99. sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle)
  100. loader = DataLoader if image_weights else InfiniteDataLoader # only DataLoader allows for attribute updates
  101. return loader(dataset,
  102. batch_size=batch_size,
  103. shuffle=shuffle and sampler is None,
  104. num_workers=nw,
  105. sampler=sampler,
  106. pin_memory=True,
  107. collate_fn=LoadImagesAndLabels.collate_fn4 if quad else LoadImagesAndLabels.collate_fn), dataset
  108. class InfiniteDataLoader(dataloader.DataLoader):
  109. """ Dataloader that reuses workers
  110. Uses same syntax as vanilla DataLoader
  111. """
  112. def __init__(self, *args, **kwargs):
  113. super().__init__(*args, **kwargs)
  114. object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler))
  115. self.iterator = super().__iter__()
  116. def __len__(self):
  117. return len(self.batch_sampler.sampler)
  118. def __iter__(self):
  119. for i in range(len(self)):
  120. yield next(self.iterator)
  121. class _RepeatSampler:
  122. """ Sampler that repeats forever
  123. Args:
  124. sampler (Sampler)
  125. """
  126. def __init__(self, sampler):
  127. self.sampler = sampler
  128. def __iter__(self):
  129. while True:
  130. yield from iter(self.sampler)
  131. class LoadImages:
  132. # YOLOv5 image/video dataloader, i.e. `python detect.py --source image.jpg/vid.mp4`
  133. def __init__(self, path, img_size=640, stride=32, auto=True):
  134. p = str(Path(path).resolve()) # os-agnostic absolute path
  135. if '*' in p:
  136. files = sorted(glob.glob(p, recursive=True)) # glob
  137. elif os.path.isdir(p):
  138. files = sorted(glob.glob(os.path.join(p, '*.*'))) # dir
  139. elif os.path.isfile(p):
  140. files = [p] # files
  141. else:
  142. raise Exception(f'ERROR: {p} does not exist')
  143. images = [x for x in files if x.split('.')[-1].lower() in IMG_FORMATS]
  144. videos = [x for x in files if x.split('.')[-1].lower() in VID_FORMATS]
  145. ni, nv = len(images), len(videos)
  146. self.img_size = img_size
  147. self.stride = stride
  148. self.files = images + videos
  149. self.nf = ni + nv # number of files
  150. self.video_flag = [False] * ni + [True] * nv
  151. self.mode = 'image'
  152. self.auto = auto
  153. if any(videos):
  154. self.new_video(videos[0]) # new video
  155. else:
  156. self.cap = None
  157. assert self.nf > 0, f'No images or videos found in {p}. ' \
  158. f'Supported formats are:\nimages: {IMG_FORMATS}\nvideos: {VID_FORMATS}'
  159. def __iter__(self):
  160. self.count = 0
  161. return self
  162. def __next__(self):
  163. if self.count == self.nf:
  164. raise StopIteration
  165. path = self.files[self.count]
  166. if self.video_flag[self.count]:
  167. # Read video
  168. self.mode = 'video'
  169. ret_val, img0 = self.cap.read()
  170. while not ret_val:
  171. self.count += 1
  172. self.cap.release()
  173. if self.count == self.nf: # last video
  174. raise StopIteration
  175. else:
  176. path = self.files[self.count]
  177. self.new_video(path)
  178. ret_val, img0 = self.cap.read()
  179. self.frame += 1
  180. s = f'video {self.count + 1}/{self.nf} ({self.frame}/{self.frames}) {path}: '
  181. else:
  182. # Read image
  183. self.count += 1
  184. img0 = cv2.imread(path) # BGR
  185. assert img0 is not None, f'Image Not Found {path}'
  186. s = f'image {self.count}/{self.nf} {path}: '
  187. # Padded resize
  188. img = letterbox(img0, self.img_size, stride=self.stride, auto=self.auto)[0]
  189. # Convert
  190. img = img.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
  191. img = np.ascontiguousarray(img)
  192. return path, img, img0, self.cap, s
  193. def new_video(self, path):
  194. self.frame = 0
  195. self.cap = cv2.VideoCapture(path)
  196. self.frames = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT))
  197. def __len__(self):
  198. return self.nf # number of files
  199. class LoadWebcam: # for inference
  200. # YOLOv5 local webcam dataloader, i.e. `python detect.py --source 0`
  201. def __init__(self, pipe='0', img_size=640, stride=32):
  202. self.img_size = img_size
  203. self.stride = stride
  204. self.pipe = eval(pipe) if pipe.isnumeric() else pipe
  205. self.cap = cv2.VideoCapture(self.pipe) # video capture object
  206. self.cap.set(cv2.CAP_PROP_BUFFERSIZE, 3) # set buffer size
  207. def __iter__(self):
  208. self.count = -1
  209. return self
  210. def __next__(self):
  211. self.count += 1
  212. if cv2.waitKey(1) == ord('q'): # q to quit
  213. self.cap.release()
  214. cv2.destroyAllWindows()
  215. raise StopIteration
  216. # Read frame
  217. ret_val, img0 = self.cap.read()
  218. img0 = cv2.flip(img0, 1) # flip left-right
  219. # Print
  220. assert ret_val, f'Camera Error {self.pipe}'
  221. img_path = 'webcam.jpg'
  222. s = f'webcam {self.count}: '
  223. # Padded resize
  224. img = letterbox(img0, self.img_size, stride=self.stride)[0]
  225. # Convert
  226. img = img.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
  227. img = np.ascontiguousarray(img)
  228. return img_path, img, img0, None, s
  229. def __len__(self):
  230. return 0
  231. class LoadStreams:
  232. # YOLOv5 streamloader, i.e. `python detect.py --source 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP streams`
  233. def __init__(self, sources='streams.txt', img_size=640, stride=32, auto=True):
  234. self.mode = 'stream'
  235. self.img_size = img_size
  236. self.stride = stride
  237. if os.path.isfile(sources):
  238. with open(sources) as f:
  239. sources = [x.strip() for x in f.read().strip().splitlines() if len(x.strip())]
  240. else:
  241. sources = [sources]
  242. n = len(sources)
  243. self.imgs, self.fps, self.frames, self.threads = [None] * n, [0] * n, [0] * n, [None] * n
  244. self.sources = [clean_str(x) for x in sources] # clean source names for later
  245. self.auto = auto
  246. for i, s in enumerate(sources): # index, source
  247. # Start thread to read frames from video stream
  248. st = f'{i + 1}/{n}: {s}... '
  249. if urlparse(s).hostname in ('youtube.com', 'youtu.be'): # if source is YouTube video
  250. check_requirements(('pafy', 'youtube_dl==2020.12.2'))
  251. import pafy
  252. s = pafy.new(s).getbest(preftype="mp4").url # YouTube URL
  253. s = eval(s) if s.isnumeric() else s # i.e. s = '0' local webcam
  254. cap = cv2.VideoCapture(s)
  255. assert cap.isOpened(), f'{st}Failed to open {s}'
  256. w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
  257. h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
  258. fps = cap.get(cv2.CAP_PROP_FPS) # warning: may return 0 or nan
  259. self.frames[i] = max(int(cap.get(cv2.CAP_PROP_FRAME_COUNT)), 0) or float('inf') # infinite stream fallback
  260. self.fps[i] = max((fps if math.isfinite(fps) else 0) % 100, 0) or 30 # 30 FPS fallback
  261. _, self.imgs[i] = cap.read() # guarantee first frame
  262. self.threads[i] = Thread(target=self.update, args=([i, cap, s]), daemon=True)
  263. LOGGER.info(f"{st} Success ({self.frames[i]} frames {w}x{h} at {self.fps[i]:.2f} FPS)")
  264. self.threads[i].start()
  265. LOGGER.info('') # newline
  266. # check for common shapes
  267. s = np.stack([letterbox(x, self.img_size, stride=self.stride, auto=self.auto)[0].shape for x in self.imgs])
  268. self.rect = np.unique(s, axis=0).shape[0] == 1 # rect inference if all shapes equal
  269. if not self.rect:
  270. LOGGER.warning('WARNING: Stream shapes differ. For optimal performance supply similarly-shaped streams.')
  271. def update(self, i, cap, stream):
  272. # Read stream `i` frames in daemon thread
  273. n, f, read = 0, self.frames[i], 1 # frame number, frame array, inference every 'read' frame
  274. while cap.isOpened() and n < f:
  275. n += 1
  276. # _, self.imgs[index] = cap.read()
  277. cap.grab()
  278. if n % read == 0:
  279. success, im = cap.retrieve()
  280. if success:
  281. self.imgs[i] = im
  282. else:
  283. LOGGER.warning('WARNING: Video stream unresponsive, please check your IP camera connection.')
  284. self.imgs[i] = np.zeros_like(self.imgs[i])
  285. cap.open(stream) # re-open stream if signal was lost
  286. time.sleep(1 / self.fps[i]) # wait time
  287. def __iter__(self):
  288. self.count = -1
  289. return self
  290. def __next__(self):
  291. self.count += 1
  292. if not all(x.is_alive() for x in self.threads) or cv2.waitKey(1) == ord('q'): # q to quit
  293. cv2.destroyAllWindows()
  294. raise StopIteration
  295. # Letterbox
  296. img0 = self.imgs.copy()
  297. img = [letterbox(x, self.img_size, stride=self.stride, auto=self.rect and self.auto)[0] for x in img0]
  298. # Stack
  299. img = np.stack(img, 0)
  300. # Convert
  301. img = img[..., ::-1].transpose((0, 3, 1, 2)) # BGR to RGB, BHWC to BCHW
  302. img = np.ascontiguousarray(img)
  303. return self.sources, img, img0, None, ''
  304. def __len__(self):
  305. return len(self.sources) # 1E12 frames = 32 streams at 30 FPS for 30 years
  306. def img2label_paths(img_paths):
  307. # Define label paths as a function of image paths
  308. sa, sb = os.sep + 'images' + os.sep, os.sep + 'labels' + os.sep # /images/, /labels/ substrings
  309. return [sb.join(x.rsplit(sa, 1)).rsplit('.', 1)[0] + '.txt' for x in img_paths]
  310. class LoadImagesAndLabels(Dataset):
  311. # YOLOv5 train_loader/val_loader, loads images and labels for training and validation
  312. cache_version = 0.6 # dataset labels *.cache version
  313. def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False,
  314. cache_images=False, single_cls=False, stride=32, pad=0.0, prefix=''):
  315. self.img_size = img_size
  316. self.augment = augment
  317. self.hyp = hyp
  318. self.image_weights = image_weights
  319. self.rect = False if image_weights else rect
  320. self.mosaic = self.augment and not self.rect # load 4 images at a time into a mosaic (only during training)
  321. self.mosaic_border = [-img_size // 2, -img_size // 2]
  322. self.stride = stride
  323. self.path = path
  324. self.albumentations = Albumentations() if augment else None
  325. try:
  326. f = [] # image files
  327. for p in path if isinstance(path, list) else [path]:
  328. p = Path(p) # os-agnostic
  329. if p.is_dir(): # dir
  330. f += glob.glob(str(p / '**' / '*.*'), recursive=True)
  331. # f = list(p.rglob('*.*')) # pathlib
  332. elif p.is_file(): # file
  333. with open(p) as t:
  334. t = t.read().strip().splitlines()
  335. parent = str(p.parent) + os.sep
  336. f += [x.replace('./', parent) if x.startswith('./') else x for x in t] # local to global path
  337. # f += [p.parent / x.lstrip(os.sep) for x in t] # local to global path (pathlib)
  338. else:
  339. raise Exception(f'{prefix}{p} does not exist')
  340. self.im_files = sorted(x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in IMG_FORMATS)
  341. # self.img_files = sorted([x for x in f if x.suffix[1:].lower() in IMG_FORMATS]) # pathlib
  342. assert self.im_files, f'{prefix}No images found'
  343. except Exception as e:
  344. raise Exception(f'{prefix}Error loading data from {path}: {e}\nSee {HELP_URL}')
  345. # Check cache
  346. self.label_files = img2label_paths(self.im_files) # labels
  347. cache_path = (p if p.is_file() else Path(self.label_files[0]).parent).with_suffix('.cache')
  348. try:
  349. cache, exists = np.load(cache_path, allow_pickle=True).item(), True # load dict
  350. assert cache['version'] == self.cache_version # same version
  351. assert cache['hash'] == get_hash(self.label_files + self.im_files) # same hash
  352. except Exception:
  353. cache, exists = self.cache_labels(cache_path, prefix), False # cache
  354. # Display cache
  355. nf, nm, ne, nc, n = cache.pop('results') # found, missing, empty, corrupt, total
  356. if exists:
  357. d = f"Scanning '{cache_path}' images and labels... {nf} found, {nm} missing, {ne} empty, {nc} corrupt"
  358. tqdm(None, desc=prefix + d, total=n, initial=n, bar_format=BAR_FORMAT) # display cache results
  359. if cache['msgs']:
  360. LOGGER.info('\n'.join(cache['msgs'])) # display warnings
  361. assert nf > 0 or not augment, f'{prefix}No labels in {cache_path}. Can not train without labels. See {HELP_URL}'
  362. # Read cache
  363. [cache.pop(k) for k in ('hash', 'version', 'msgs')] # remove items
  364. labels, shapes, self.segments = zip(*cache.values())
  365. self.labels = list(labels)
  366. self.shapes = np.array(shapes, dtype=np.float64)
  367. self.im_files = list(cache.keys()) # update
  368. self.label_files = img2label_paths(cache.keys()) # update
  369. n = len(shapes) # number of images
  370. bi = np.floor(np.arange(n) / batch_size).astype(np.int) # batch index
  371. nb = bi[-1] + 1 # number of batches
  372. self.batch = bi # batch index of image
  373. self.n = n
  374. self.indices = range(n)
  375. # Update labels
  376. include_class = [] # filter labels to include only these classes (optional)
  377. include_class_array = np.array(include_class).reshape(1, -1)
  378. for i, (label, segment) in enumerate(zip(self.labels, self.segments)):
  379. if include_class:
  380. j = (label[:, 0:1] == include_class_array).any(1)
  381. self.labels[i] = label[j]
  382. if segment:
  383. self.segments[i] = segment[j]
  384. if single_cls: # single-class training, merge all classes into 0
  385. self.labels[i][:, 0] = 0
  386. if segment:
  387. self.segments[i][:, 0] = 0
  388. # Rectangular Training
  389. if self.rect:
  390. # Sort by aspect ratio
  391. s = self.shapes # wh
  392. ar = s[:, 1] / s[:, 0] # aspect ratio
  393. irect = ar.argsort()
  394. self.im_files = [self.im_files[i] for i in irect]
  395. self.label_files = [self.label_files[i] for i in irect]
  396. self.labels = [self.labels[i] for i in irect]
  397. self.shapes = s[irect] # wh
  398. ar = ar[irect]
  399. # Set training image shapes
  400. shapes = [[1, 1]] * nb
  401. for i in range(nb):
  402. ari = ar[bi == i]
  403. mini, maxi = ari.min(), ari.max()
  404. if maxi < 1:
  405. shapes[i] = [maxi, 1]
  406. elif mini > 1:
  407. shapes[i] = [1, 1 / mini]
  408. self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int) * stride
  409. # Cache images into RAM/disk for faster training (WARNING: large datasets may exceed system resources)
  410. self.ims = [None] * n
  411. self.npy_files = [Path(f).with_suffix('.npy') for f in self.im_files]
  412. if cache_images:
  413. gb = 0 # Gigabytes of cached images
  414. self.im_hw0, self.im_hw = [None] * n, [None] * n
  415. fcn = self.cache_images_to_disk if cache_images == 'disk' else self.load_image
  416. results = ThreadPool(NUM_THREADS).imap(fcn, range(n))
  417. pbar = tqdm(enumerate(results), total=n, bar_format=BAR_FORMAT)
  418. for i, x in pbar:
  419. if cache_images == 'disk':
  420. gb += self.npy_files[i].stat().st_size
  421. else: # 'ram'
  422. self.ims[i], self.im_hw0[i], self.im_hw[i] = x # im, hw_orig, hw_resized = load_image(self, i)
  423. gb += self.ims[i].nbytes
  424. pbar.desc = f'{prefix}Caching images ({gb / 1E9:.1f}GB {cache_images})'
  425. pbar.close()
  426. def cache_labels(self, path=Path('./labels.cache'), prefix=''):
  427. # Cache dataset labels, check images and read shapes
  428. x = {} # dict
  429. nm, nf, ne, nc, msgs = 0, 0, 0, 0, [] # number missing, found, empty, corrupt, messages
  430. desc = f"{prefix}Scanning '{path.parent / path.stem}' images and labels..."
  431. with Pool(NUM_THREADS) as pool:
  432. pbar = tqdm(pool.imap(verify_image_label, zip(self.im_files, self.label_files, repeat(prefix))),
  433. desc=desc, total=len(self.im_files), bar_format=BAR_FORMAT)
  434. for im_file, lb, shape, segments, nm_f, nf_f, ne_f, nc_f, msg in pbar:
  435. nm += nm_f
  436. nf += nf_f
  437. ne += ne_f
  438. nc += nc_f
  439. if im_file:
  440. x[im_file] = [lb, shape, segments]
  441. if msg:
  442. msgs.append(msg)
  443. pbar.desc = f"{desc}{nf} found, {nm} missing, {ne} empty, {nc} corrupt"
  444. pbar.close()
  445. if msgs:
  446. LOGGER.info('\n'.join(msgs))
  447. if nf == 0:
  448. LOGGER.warning(f'{prefix}WARNING: No labels found in {path}. See {HELP_URL}')
  449. x['hash'] = get_hash(self.label_files + self.im_files)
  450. x['results'] = nf, nm, ne, nc, len(self.im_files)
  451. x['msgs'] = msgs # warnings
  452. x['version'] = self.cache_version # cache version
  453. try:
  454. np.save(path, x) # save cache for next time
  455. path.with_suffix('.cache.npy').rename(path) # remove .npy suffix
  456. LOGGER.info(f'{prefix}New cache created: {path}')
  457. except Exception as e:
  458. LOGGER.warning(f'{prefix}WARNING: Cache directory {path.parent} is not writeable: {e}') # not writeable
  459. return x
  460. def __len__(self):
  461. return len(self.im_files)
  462. # def __iter__(self):
  463. # self.count = -1
  464. # print('ran dataset iter')
  465. # #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF)
  466. # return self
  467. def __getitem__(self, index):
  468. index = self.indices[index] # linear, shuffled, or image_weights
  469. hyp = self.hyp
  470. mosaic = self.mosaic and random.random() < hyp['mosaic']
  471. if mosaic:
  472. # Load mosaic
  473. img, labels = self.load_mosaic(index)
  474. shapes = None
  475. # MixUp augmentation
  476. if random.random() < hyp['mixup']:
  477. img, labels = mixup(img, labels, *self.load_mosaic(random.randint(0, self.n - 1)))
  478. else:
  479. # Load image
  480. img, (h0, w0), (h, w) = self.load_image(index)
  481. # Letterbox
  482. shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size # final letterboxed shape
  483. img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
  484. shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling
  485. labels = self.labels[index].copy()
  486. if labels.size: # normalized xywh to pixel xyxy format
  487. labels[:, 1:] = xywhn2xyxy(labels[:, 1:], ratio[0] * w, ratio[1] * h, padw=pad[0], padh=pad[1])
  488. if self.augment:
  489. img, labels = random_perspective(img, labels,
  490. degrees=hyp['degrees'],
  491. translate=hyp['translate'],
  492. scale=hyp['scale'],
  493. shear=hyp['shear'],
  494. perspective=hyp['perspective'])
  495. nl = len(labels) # number of labels
  496. if nl:
  497. labels[:, 1:5] = xyxy2xywhn(labels[:, 1:5], w=img.shape[1], h=img.shape[0], clip=True, eps=1E-3)
  498. if self.augment:
  499. # Albumentations
  500. img, labels = self.albumentations(img, labels)
  501. nl = len(labels) # update after albumentations
  502. # HSV color-space
  503. augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v'])
  504. # Flip up-down
  505. if random.random() < hyp['flipud']:
  506. img = np.flipud(img)
  507. if nl:
  508. labels[:, 2] = 1 - labels[:, 2]
  509. # Flip left-right
  510. if random.random() < hyp['fliplr']:
  511. img = np.fliplr(img)
  512. if nl:
  513. labels[:, 1] = 1 - labels[:, 1]
  514. # Cutouts
  515. # labels = cutout(img, labels, p=0.5)
  516. # nl = len(labels) # update after cutout
  517. labels_out = torch.zeros((nl, 6))
  518. if nl:
  519. labels_out[:, 1:] = torch.from_numpy(labels)
  520. # Convert
  521. img = img.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
  522. img = np.ascontiguousarray(img)
  523. return torch.from_numpy(img), labels_out, self.im_files[index], shapes
  524. def load_image(self, i):
  525. # Loads 1 image from dataset index 'i', returns (im, original hw, resized hw)
  526. im, f, fn = self.ims[i], self.im_files[i], self.npy_files[i],
  527. if im is None: # not cached in RAM
  528. if fn.exists(): # load npy
  529. im = np.load(fn)
  530. else: # read image
  531. im = cv2.imread(f) # BGR
  532. assert im is not None, f'Image Not Found {f}'
  533. h0, w0 = im.shape[:2] # orig hw
  534. r = self.img_size / max(h0, w0) # ratio
  535. if r != 1: # if sizes are not equal
  536. im = cv2.resize(im,
  537. (int(w0 * r), int(h0 * r)),
  538. interpolation=cv2.INTER_LINEAR if (self.augment or r > 1) else cv2.INTER_AREA)
  539. return im, (h0, w0), im.shape[:2] # im, hw_original, hw_resized
  540. else:
  541. return self.ims[i], self.im_hw0[i], self.im_hw[i] # im, hw_original, hw_resized
  542. def cache_images_to_disk(self, i):
  543. # Saves an image as an *.npy file for faster loading
  544. f = self.npy_files[i]
  545. if not f.exists():
  546. np.save(f.as_posix(), cv2.imread(self.im_files[i]))
  547. def load_mosaic(self, index):
  548. # YOLOv5 4-mosaic loader. Loads 1 image + 3 random images into a 4-image mosaic
  549. labels4, segments4 = [], []
  550. s = self.img_size
  551. yc, xc = (int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border) # mosaic center x, y
  552. indices = [index] + random.choices(self.indices, k=3) # 3 additional image indices
  553. random.shuffle(indices)
  554. for i, index in enumerate(indices):
  555. # Load image
  556. img, _, (h, w) = self.load_image(index)
  557. # place img in img4
  558. if i == 0: # top left
  559. img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
  560. x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image)
  561. x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image)
  562. elif i == 1: # top right
  563. x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
  564. x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
  565. elif i == 2: # bottom left
  566. x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
  567. x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
  568. elif i == 3: # bottom right
  569. x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
  570. x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
  571. img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
  572. padw = x1a - x1b
  573. padh = y1a - y1b
  574. # Labels
  575. labels, segments = self.labels[index].copy(), self.segments[index].copy()
  576. if labels.size:
  577. labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh) # normalized xywh to pixel xyxy format
  578. segments = [xyn2xy(x, w, h, padw, padh) for x in segments]
  579. labels4.append(labels)
  580. segments4.extend(segments)
  581. # Concat/clip labels
  582. labels4 = np.concatenate(labels4, 0)
  583. for x in (labels4[:, 1:], *segments4):
  584. np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective()
  585. # img4, labels4 = replicate(img4, labels4) # replicate
  586. # Augment
  587. img4, labels4, segments4 = copy_paste(img4, labels4, segments4, p=self.hyp['copy_paste'])
  588. img4, labels4 = random_perspective(img4, labels4, segments4,
  589. degrees=self.hyp['degrees'],
  590. translate=self.hyp['translate'],
  591. scale=self.hyp['scale'],
  592. shear=self.hyp['shear'],
  593. perspective=self.hyp['perspective'],
  594. border=self.mosaic_border) # border to remove
  595. return img4, labels4
  596. def load_mosaic9(self, index):
  597. # YOLOv5 9-mosaic loader. Loads 1 image + 8 random images into a 9-image mosaic
  598. labels9, segments9 = [], []
  599. s = self.img_size
  600. indices = [index] + random.choices(self.indices, k=8) # 8 additional image indices
  601. random.shuffle(indices)
  602. hp, wp = -1, -1 # height, width previous
  603. for i, index in enumerate(indices):
  604. # Load image
  605. img, _, (h, w) = self.load_image(index)
  606. # place img in img9
  607. if i == 0: # center
  608. img9 = np.full((s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
  609. h0, w0 = h, w
  610. c = s, s, s + w, s + h # xmin, ymin, xmax, ymax (base) coordinates
  611. elif i == 1: # top
  612. c = s, s - h, s + w, s
  613. elif i == 2: # top right
  614. c = s + wp, s - h, s + wp + w, s
  615. elif i == 3: # right
  616. c = s + w0, s, s + w0 + w, s + h
  617. elif i == 4: # bottom right
  618. c = s + w0, s + hp, s + w0 + w, s + hp + h
  619. elif i == 5: # bottom
  620. c = s + w0 - w, s + h0, s + w0, s + h0 + h
  621. elif i == 6: # bottom left
  622. c = s + w0 - wp - w, s + h0, s + w0 - wp, s + h0 + h
  623. elif i == 7: # left
  624. c = s - w, s + h0 - h, s, s + h0
  625. elif i == 8: # top left
  626. c = s - w, s + h0 - hp - h, s, s + h0 - hp
  627. padx, pady = c[:2]
  628. x1, y1, x2, y2 = (max(x, 0) for x in c) # allocate coords
  629. # Labels
  630. labels, segments = self.labels[index].copy(), self.segments[index].copy()
  631. if labels.size:
  632. labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padx, pady) # normalized xywh to pixel xyxy format
  633. segments = [xyn2xy(x, w, h, padx, pady) for x in segments]
  634. labels9.append(labels)
  635. segments9.extend(segments)
  636. # Image
  637. img9[y1:y2, x1:x2] = img[y1 - pady:, x1 - padx:] # img9[ymin:ymax, xmin:xmax]
  638. hp, wp = h, w # height, width previous
  639. # Offset
  640. yc, xc = (int(random.uniform(0, s)) for _ in self.mosaic_border) # mosaic center x, y
  641. img9 = img9[yc:yc + 2 * s, xc:xc + 2 * s]
  642. # Concat/clip labels
  643. labels9 = np.concatenate(labels9, 0)
  644. labels9[:, [1, 3]] -= xc
  645. labels9[:, [2, 4]] -= yc
  646. c = np.array([xc, yc]) # centers
  647. segments9 = [x - c for x in segments9]
  648. for x in (labels9[:, 1:], *segments9):
  649. np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective()
  650. # img9, labels9 = replicate(img9, labels9) # replicate
  651. # Augment
  652. img9, labels9 = random_perspective(img9, labels9, segments9,
  653. degrees=self.hyp['degrees'],
  654. translate=self.hyp['translate'],
  655. scale=self.hyp['scale'],
  656. shear=self.hyp['shear'],
  657. perspective=self.hyp['perspective'],
  658. border=self.mosaic_border) # border to remove
  659. return img9, labels9
  660. @staticmethod
  661. def collate_fn(batch):
  662. im, label, path, shapes = zip(*batch) # transposed
  663. for i, lb in enumerate(label):
  664. lb[:, 0] = i # add target image index for build_targets()
  665. return torch.stack(im, 0), torch.cat(label, 0), path, shapes
  666. @staticmethod
  667. def collate_fn4(batch):
  668. img, label, path, shapes = zip(*batch) # transposed
  669. n = len(shapes) // 4
  670. im4, label4, path4, shapes4 = [], [], path[:n], shapes[:n]
  671. ho = torch.tensor([[0.0, 0, 0, 1, 0, 0]])
  672. wo = torch.tensor([[0.0, 0, 1, 0, 0, 0]])
  673. s = torch.tensor([[1, 1, 0.5, 0.5, 0.5, 0.5]]) # scale
  674. for i in range(n): # zidane torch.zeros(16,3,720,1280) # BCHW
  675. i *= 4
  676. if random.random() < 0.5:
  677. im = F.interpolate(img[i].unsqueeze(0).float(), scale_factor=2.0, mode='bilinear', align_corners=False)[
  678. 0].type(img[i].type())
  679. lb = label[i]
  680. else:
  681. im = torch.cat((torch.cat((img[i], img[i + 1]), 1), torch.cat((img[i + 2], img[i + 3]), 1)), 2)
  682. lb = torch.cat((label[i], label[i + 1] + ho, label[i + 2] + wo, label[i + 3] + ho + wo), 0) * s
  683. im4.append(im)
  684. label4.append(lb)
  685. for i, lb in enumerate(label4):
  686. lb[:, 0] = i # add target image index for build_targets()
  687. return torch.stack(im4, 0), torch.cat(label4, 0), path4, shapes4
  688. # Ancillary functions --------------------------------------------------------------------------------------------------
  689. def create_folder(path='./new'):
  690. # Create folder
  691. if os.path.exists(path):
  692. shutil.rmtree(path) # delete output folder
  693. os.makedirs(path) # make new output folder
  694. def flatten_recursive(path=DATASETS_DIR / 'coco128'):
  695. # Flatten a recursive directory by bringing all files to top level
  696. new_path = Path(str(path) + '_flat')
  697. create_folder(new_path)
  698. for file in tqdm(glob.glob(str(Path(path)) + '/**/*.*', recursive=True)):
  699. shutil.copyfile(file, new_path / Path(file).name)
  700. def extract_boxes(path=DATASETS_DIR / 'coco128'): # from utils.datasets import *; extract_boxes()
  701. # Convert detection dataset into classification dataset, with one directory per class
  702. path = Path(path) # images dir
  703. shutil.rmtree(path / 'classifier') if (path / 'classifier').is_dir() else None # remove existing
  704. files = list(path.rglob('*.*'))
  705. n = len(files) # number of files
  706. for im_file in tqdm(files, total=n):
  707. if im_file.suffix[1:] in IMG_FORMATS:
  708. # image
  709. im = cv2.imread(str(im_file))[..., ::-1] # BGR to RGB
  710. h, w = im.shape[:2]
  711. # labels
  712. lb_file = Path(img2label_paths([str(im_file)])[0])
  713. if Path(lb_file).exists():
  714. with open(lb_file) as f:
  715. lb = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32) # labels
  716. for j, x in enumerate(lb):
  717. c = int(x[0]) # class
  718. f = (path / 'classifier') / f'{c}' / f'{path.stem}_{im_file.stem}_{j}.jpg' # new filename
  719. if not f.parent.is_dir():
  720. f.parent.mkdir(parents=True)
  721. b = x[1:] * [w, h, w, h] # box
  722. # b[2:] = b[2:].max() # rectangle to square
  723. b[2:] = b[2:] * 1.2 + 3 # pad
  724. b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(np.int)
  725. b[[0, 2]] = np.clip(b[[0, 2]], 0, w) # clip boxes outside of image
  726. b[[1, 3]] = np.clip(b[[1, 3]], 0, h)
  727. assert cv2.imwrite(str(f), im[b[1]:b[3], b[0]:b[2]]), f'box failure in {f}'
  728. def autosplit(path=DATASETS_DIR / 'coco128/images', weights=(0.9, 0.1, 0.0), annotated_only=False):
  729. """ Autosplit a dataset into train/val/test splits and save path/autosplit_*.txt files
  730. Usage: from utils.datasets import *; autosplit()
  731. Arguments
  732. path: Path to images directory
  733. weights: Train, val, test weights (list, tuple)
  734. annotated_only: Only use images with an annotated txt file
  735. """
  736. path = Path(path) # images dir
  737. files = sorted(x for x in path.rglob('*.*') if x.suffix[1:].lower() in IMG_FORMATS) # image files only
  738. n = len(files) # number of files
  739. random.seed(0) # for reproducibility
  740. indices = random.choices([0, 1, 2], weights=weights, k=n) # assign each image to a split
  741. txt = ['autosplit_train.txt', 'autosplit_val.txt', 'autosplit_test.txt'] # 3 txt files
  742. [(path.parent / x).unlink(missing_ok=True) for x in txt] # remove existing
  743. print(f'Autosplitting images from {path}' + ', using *.txt labeled images only' * annotated_only)
  744. for i, img in tqdm(zip(indices, files), total=n):
  745. if not annotated_only or Path(img2label_paths([str(img)])[0]).exists(): # check label
  746. with open(path.parent / txt[i], 'a') as f:
  747. f.write('./' + img.relative_to(path.parent).as_posix() + '\n') # add image to txt file
  748. def verify_image_label(args):
  749. # Verify one image-label pair
  750. im_file, lb_file, prefix = args
  751. nm, nf, ne, nc, msg, segments = 0, 0, 0, 0, '', [] # number (missing, found, empty, corrupt), message, segments
  752. try:
  753. # verify images
  754. im = Image.open(im_file)
  755. im.verify() # PIL verify
  756. shape = exif_size(im) # image size
  757. assert (shape[0] > 9) & (shape[1] > 9), f'image size {shape} <10 pixels'
  758. assert im.format.lower() in IMG_FORMATS, f'invalid image format {im.format}'
  759. if im.format.lower() in ('jpg', 'jpeg'):
  760. with open(im_file, 'rb') as f:
  761. f.seek(-2, 2)
  762. if f.read() != b'\xff\xd9': # corrupt JPEG
  763. ImageOps.exif_transpose(Image.open(im_file)).save(im_file, 'JPEG', subsampling=0, quality=100)
  764. msg = f'{prefix}WARNING: {im_file}: corrupt JPEG restored and saved'
  765. # verify labels
  766. if os.path.isfile(lb_file):
  767. nf = 1 # label found
  768. with open(lb_file) as f:
  769. lb = [x.split() for x in f.read().strip().splitlines() if len(x)]
  770. if any(len(x) > 6 for x in lb): # is segment
  771. classes = np.array([x[0] for x in lb], dtype=np.float32)
  772. segments = [np.array(x[1:], dtype=np.float32).reshape(-1, 2) for x in lb] # (cls, xy1...)
  773. lb = np.concatenate((classes.reshape(-1, 1), segments2boxes(segments)), 1) # (cls, xywh)
  774. lb = np.array(lb, dtype=np.float32)
  775. nl = len(lb)
  776. if nl:
  777. assert lb.shape[1] == 5, f'labels require 5 columns, {lb.shape[1]} columns detected'
  778. assert (lb >= 0).all(), f'negative label values {lb[lb < 0]}'
  779. assert (lb[:, 1:] <= 1).all(), f'non-normalized or out of bounds coordinates {lb[:, 1:][lb[:, 1:] > 1]}'
  780. _, i = np.unique(lb, axis=0, return_index=True)
  781. if len(i) < nl: # duplicate row check
  782. lb = lb[i] # remove duplicates
  783. if segments:
  784. segments = segments[i]
  785. msg = f'{prefix}WARNING: {im_file}: {nl - len(i)} duplicate labels removed'
  786. else:
  787. ne = 1 # label empty
  788. lb = np.zeros((0, 5), dtype=np.float32)
  789. else:
  790. nm = 1 # label missing
  791. lb = np.zeros((0, 5), dtype=np.float32)
  792. return im_file, lb, shape, segments, nm, nf, ne, nc, msg
  793. except Exception as e:
  794. nc = 1
  795. msg = f'{prefix}WARNING: {im_file}: ignoring corrupt image/label: {e}'
  796. return [None, None, None, None, nm, nf, ne, nc, msg]
  797. def dataset_stats(path='coco128.yaml', autodownload=False, verbose=False, profile=False, hub=False):
  798. """ Return dataset statistics dictionary with images and instances counts per split per class
  799. To run in parent directory: export PYTHONPATH="$PWD/yolov5"
  800. Usage1: from utils.datasets import *; dataset_stats('coco128.yaml', autodownload=True)
  801. Usage2: from utils.datasets import *; dataset_stats('path/to/coco128_with_yaml.zip')
  802. Arguments
  803. path: Path to data.yaml or data.zip (with data.yaml inside data.zip)
  804. autodownload: Attempt to download dataset if not found locally
  805. verbose: Print stats dictionary
  806. """
  807. def round_labels(labels):
  808. # Update labels to integer class and 6 decimal place floats
  809. return [[int(c), *(round(x, 4) for x in points)] for c, *points in labels]
  810. def unzip(path):
  811. # Unzip data.zip TODO: CONSTRAINT: path/to/abc.zip MUST unzip to 'path/to/abc/'
  812. if str(path).endswith('.zip'): # path is data.zip
  813. assert Path(path).is_file(), f'Error unzipping {path}, file not found'
  814. ZipFile(path).extractall(path=path.parent) # unzip
  815. dir = path.with_suffix('') # dataset directory == zip name
  816. return True, str(dir), next(dir.rglob('*.yaml')) # zipped, data_dir, yaml_path
  817. else: # path is data.yaml
  818. return False, None, path
  819. def hub_ops(f, max_dim=1920):
  820. # HUB ops for 1 image 'f': resize and save at reduced quality in /dataset-hub for web/app viewing
  821. f_new = im_dir / Path(f).name # dataset-hub image filename
  822. try: # use PIL
  823. im = Image.open(f)
  824. r = max_dim / max(im.height, im.width) # ratio
  825. if r < 1.0: # image too large
  826. im = im.resize((int(im.width * r), int(im.height * r)))
  827. im.save(f_new, 'JPEG', quality=75, optimize=True) # save
  828. except Exception as e: # use OpenCV
  829. print(f'WARNING: HUB ops PIL failure {f}: {e}')
  830. im = cv2.imread(f)
  831. im_height, im_width = im.shape[:2]
  832. r = max_dim / max(im_height, im_width) # ratio
  833. if r < 1.0: # image too large
  834. im = cv2.resize(im, (int(im_width * r), int(im_height * r)), interpolation=cv2.INTER_AREA)
  835. cv2.imwrite(str(f_new), im)
  836. zipped, data_dir, yaml_path = unzip(Path(path))
  837. with open(check_yaml(yaml_path), errors='ignore') as f:
  838. data = yaml.safe_load(f) # data dict
  839. if zipped:
  840. data['path'] = data_dir # TODO: should this be dir.resolve()?
  841. check_dataset(data, autodownload) # download dataset if missing
  842. hub_dir = Path(data['path'] + ('-hub' if hub else ''))
  843. stats = {'nc': data['nc'], 'names': data['names']} # statistics dictionary
  844. for split in 'train', 'val', 'test':
  845. if data.get(split) is None:
  846. stats[split] = None # i.e. no test set
  847. continue
  848. x = []
  849. dataset = LoadImagesAndLabels(data[split]) # load dataset
  850. for label in tqdm(dataset.labels, total=dataset.n, desc='Statistics'):
  851. x.append(np.bincount(label[:, 0].astype(int), minlength=data['nc']))
  852. x = np.array(x) # shape(128x80)
  853. stats[split] = {'instance_stats': {'total': int(x.sum()), 'per_class': x.sum(0).tolist()},
  854. 'image_stats': {'total': dataset.n, 'unlabelled': int(np.all(x == 0, 1).sum()),
  855. 'per_class': (x > 0).sum(0).tolist()},
  856. 'labels': [{str(Path(k).name): round_labels(v.tolist())} for k, v in
  857. zip(dataset.im_files, dataset.labels)]}
  858. if hub:
  859. im_dir = hub_dir / 'images'
  860. im_dir.mkdir(parents=True, exist_ok=True)
  861. for _ in tqdm(ThreadPool(NUM_THREADS).imap(hub_ops, dataset.im_files), total=dataset.n, desc='HUB Ops'):
  862. pass
  863. # Profile
  864. stats_path = hub_dir / 'stats.json'
  865. if profile:
  866. for _ in range(1):
  867. file = stats_path.with_suffix('.npy')
  868. t1 = time.time()
  869. np.save(file, stats)
  870. t2 = time.time()
  871. x = np.load(file, allow_pickle=True)
  872. print(f'stats.npy times: {time.time() - t2:.3f}s read, {t2 - t1:.3f}s write')
  873. file = stats_path.with_suffix('.json')
  874. t1 = time.time()
  875. with open(file, 'w') as f:
  876. json.dump(stats, f) # save stats *.json
  877. t2 = time.time()
  878. with open(file) as f:
  879. x = json.load(f) # load hyps dict
  880. print(f'stats.json times: {time.time() - t2:.3f}s read, {t2 - t1:.3f}s write')
  881. # Save, print and return
  882. if hub:
  883. print(f'Saving {stats_path.resolve()}...')
  884. with open(stats_path, 'w') as f:
  885. json.dump(stats, f) # save stats.json
  886. if verbose:
  887. print(json.dumps(stats, indent=2, sort_keys=False))
  888. return stats