Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.

README.md 10KB

il y a 4 ans
il y a 4 ans
il y a 4 ans
il y a 4 ans
il y a 4 ans
il y a 4 ans
il y a 4 ans
il y a 4 ans
il y a 4 ans
il y a 4 ans
il y a 4 ans
il y a 4 ans
il y a 4 ans
il y a 4 ans
il y a 4 ans
il y a 4 ans
il y a 4 ans
il y a 4 ans
il y a 4 ans
il y a 4 ans
il y a 4 ans
il y a 4 ans
il y a 4 ans
il y a 4 ans
il y a 4 ans
il y a 4 ans
il y a 4 ans
il y a 4 ans
il y a 4 ans
il y a 4 ans
il y a 4 ans
il y a 4 ans
il y a 4 ans
il y a 4 ans
il y a 4 ans
il y a 4 ans
il y a 4 ans
il y a 4 ans
il y a 4 ans
il y a 4 ans
il y a 4 ans
il y a 4 ans
il y a 4 ans
il y a 4 ans
il y a 4 ans
il y a 4 ans
il y a 4 ans
il y a 4 ans
il y a 4 ans
il y a 4 ans
il y a 4 ans
il y a 4 ans
il y a 4 ans
il y a 4 ans
il y a 4 ans
il y a 4 ans
il y a 4 ans
il y a 4 ans
il y a 4 ans
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152
  1. <a href="https://apps.apple.com/app/id1452689527" target="_blank">
  2. <img src="https://user-images.githubusercontent.com/26833433/98699617-a1595a00-2377-11eb-8145-fc674eb9b1a7.jpg" width="1000"></a>
  3. &nbsp
  4. ![CI CPU testing](https://github.com/ultralytics/yolov5/workflows/CI%20CPU%20testing/badge.svg)
  5. This repository represents Ultralytics open-source research into future object detection methods, and incorporates our lessons learned and best practices evolved over training thousands of models on custom client datasets with our previous YOLO repository https://github.com/ultralytics/yolov3. **All code and models are under active development, and are subject to modification or deletion without notice.** Use at your own risk.
  6. <img src="https://user-images.githubusercontent.com/26833433/90187293-6773ba00-dd6e-11ea-8f90-cd94afc0427f.png" width="1000">** GPU Speed measures end-to-end time per image averaged over 5000 COCO val2017 images using a V100 GPU with batch size 32, and includes image preprocessing, PyTorch FP16 inference, postprocessing and NMS. EfficientDet data from [google/automl](https://github.com/google/automl) at batch size 8.
  7. - **August 13, 2020**: [v3.0 release](https://github.com/ultralytics/yolov5/releases/tag/v3.0): nn.Hardswish() activations, data autodownload, native AMP.
  8. - **July 23, 2020**: [v2.0 release](https://github.com/ultralytics/yolov5/releases/tag/v2.0): improved model definition, training and mAP.
  9. - **June 22, 2020**: [PANet](https://arxiv.org/abs/1803.01534) updates: new heads, reduced parameters, improved speed and mAP [364fcfd](https://github.com/ultralytics/yolov5/commit/364fcfd7dba53f46edd4f04c037a039c0a287972).
  10. - **June 19, 2020**: [FP16](https://pytorch.org/docs/stable/nn.html#torch.nn.Module.half) as new default for smaller checkpoints and faster inference [d4c6674](https://github.com/ultralytics/yolov5/commit/d4c6674c98e19df4c40e33a777610a18d1961145).
  11. - **June 9, 2020**: [CSP](https://github.com/WongKinYiu/CrossStagePartialNetworks) updates: improved speed, size, and accuracy (credit to @WongKinYiu for CSP).
  12. - **May 27, 2020**: Public release. YOLOv5 models are SOTA among all known YOLO implementations.
  13. ## Pretrained Checkpoints
  14. | Model | AP<sup>val</sup> | AP<sup>test</sup> | AP<sub>50</sub> | Speed<sub>GPU</sub> | FPS<sub>GPU</sub> || params | FLOPS |
  15. |---------- |------ |------ |------ | -------- | ------| ------ |------ | :------: |
  16. | [YOLOv5s](https://github.com/ultralytics/yolov5/releases) | 37.0 | 37.0 | 56.2 | **2.4ms** | **416** || 7.5M | 13.2B
  17. | [YOLOv5m](https://github.com/ultralytics/yolov5/releases) | 44.3 | 44.3 | 63.2 | 3.4ms | 294 || 21.8M | 39.4B
  18. | [YOLOv5l](https://github.com/ultralytics/yolov5/releases) | 47.7 | 47.7 | 66.5 | 4.4ms | 227 || 47.8M | 88.1B
  19. | [YOLOv5x](https://github.com/ultralytics/yolov5/releases) | **49.2** | **49.2** | **67.7** | 6.9ms | 145 || 89.0M | 166.4B
  20. | | | | | | || |
  21. | [YOLOv5x](https://github.com/ultralytics/yolov5/releases) + TTA|**50.8**| **50.8** | **68.9** | 25.5ms | 39 || 89.0M | 354.3B
  22. | | | | | | || |
  23. | [YOLOv3-SPP](https://github.com/ultralytics/yolov5/releases) | 45.6 | 45.5 | 65.2 | 4.5ms | 222 || 63.0M | 118.0B
  24. ** AP<sup>test</sup> denotes COCO [test-dev2017](http://cocodataset.org/#upload) server results, all other AP results denote val2017 accuracy.
  25. ** All AP numbers are for single-model single-scale without ensemble or TTA. **Reproduce mAP** by `python test.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65`
  26. ** Speed<sub>GPU</sub> averaged over 5000 COCO val2017 images using a GCP [n1-standard-16](https://cloud.google.com/compute/docs/machine-types#n1_standard_machine_types) V100 instance, and includes image preprocessing, FP16 inference, postprocessing and NMS. NMS is 1-2ms/img. **Reproduce speed** by `python test.py --data coco.yaml --img 640 --conf 0.25 --iou 0.45`
  27. ** All checkpoints are trained to 300 epochs with default settings and hyperparameters (no autoaugmentation).
  28. ** Test Time Augmentation ([TTA](https://github.com/ultralytics/yolov5/issues/303)) runs at 3 image sizes. **Reproduce TTA** by `python test.py --data coco.yaml --img 832 --iou 0.65 --augment`
  29. ## Requirements
  30. Python 3.8 or later with all [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) dependencies installed, including `torch>=1.7`. To install run:
  31. ```bash
  32. $ pip install -r requirements.txt
  33. ```
  34. ## Tutorials
  35. * [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data)&nbsp; 🚀 RECOMMENDED
  36. * [Weights & Biases Logging](https://github.com/ultralytics/yolov5/issues/1289)&nbsp; 🌟 NEW
  37. * [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475)
  38. * [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36)&nbsp; ⭐ NEW
  39. * [ONNX and TorchScript Export](https://github.com/ultralytics/yolov5/issues/251)
  40. * [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303)
  41. * [Model Ensembling](https://github.com/ultralytics/yolov5/issues/318)
  42. * [Model Pruning/Sparsity](https://github.com/ultralytics/yolov5/issues/304)
  43. * [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607)
  44. * [Transfer Learning with Frozen Layers](https://github.com/ultralytics/yolov5/issues/1314)&nbsp; ⭐ NEW
  45. * [TensorRT Deployment](https://github.com/wang-xinyu/tensorrtx)
  46. ## Environments
  47. YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):
  48. - **Google Colab Notebook** with free GPU: <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
  49. - **Kaggle Notebook** with free GPU: [https://www.kaggle.com/ultralytics/yolov5](https://www.kaggle.com/ultralytics/yolov5)
  50. - **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)
  51. - **Docker Image** https://hub.docker.com/r/ultralytics/yolov5. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) ![Docker Pulls](https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker)
  52. ## Inference
  53. detect.py runs inference on a variety of sources, downloading models automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`.
  54. ```bash
  55. $ python detect.py --source 0 # webcam
  56. file.jpg # image
  57. file.mp4 # video
  58. path/ # directory
  59. path/*.jpg # glob
  60. rtsp://170.93.143.139/rtplive/470011e600ef003a004ee33696235daa # rtsp stream
  61. rtmp://192.168.1.105/live/test # rtmp stream
  62. http://112.50.243.8/PLTV/88888888/224/3221225900/1.m3u8 # http stream
  63. ```
  64. To run inference on example images in `data/images`:
  65. ```bash
  66. $ python detect.py --source data/images --weights yolov5s.pt --conf 0.25
  67. Namespace(agnostic_nms=False, augment=False, classes=None, conf_thres=0.25, device='', img_size=640, iou_thres=0.45, save_conf=False, save_dir='runs/detect', save_txt=False, source='data/images/', update=False, view_img=False, weights=['yolov5s.pt'])
  68. Using torch 1.7.0+cu101 CUDA:0 (Tesla V100-SXM2-16GB, 16130MB)
  69. Downloading https://github.com/ultralytics/yolov5/releases/download/v3.1/yolov5s.pt to yolov5s.pt... 100%|██████████████| 14.5M/14.5M [00:00<00:00, 21.3MB/s]
  70. Fusing layers...
  71. Model Summary: 232 layers, 7459581 parameters, 0 gradients
  72. image 1/2 data/images/bus.jpg: 640x480 4 persons, 1 buss, 1 skateboards, Done. (0.012s)
  73. image 2/2 data/images/zidane.jpg: 384x640 2 persons, 2 ties, Done. (0.012s)
  74. Results saved to runs/detect/exp
  75. Done. (0.113s)
  76. ```
  77. <img src="https://user-images.githubusercontent.com/26833433/97107365-685a8d80-16c7-11eb-8c2e-83aac701d8b9.jpeg" width="500">
  78. ### PyTorch Hub
  79. To run **batched inference** with YOLOv5 and [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36):
  80. ```python
  81. import torch
  82. from PIL import Image
  83. # Model
  84. model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True).autoshape() # for PIL/cv2/np inputs and NMS
  85. # Images
  86. img1 = Image.open('zidane.jpg')
  87. img2 = Image.open('bus.jpg')
  88. imgs = [img1, img2] # batched list of images
  89. # Inference
  90. prediction = model(imgs, size=640) # includes NMS
  91. ```
  92. ## Training
  93. Download [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh) and run command below. Training times for YOLOv5s/m/l/x are 2/4/6/8 days on a single V100 (multi-GPU times faster). Use the largest `--batch-size` your GPU allows (batch sizes shown for 16 GB devices).
  94. ```bash
  95. $ python train.py --data coco.yaml --cfg yolov5s.yaml --weights '' --batch-size 64
  96. yolov5m 40
  97. yolov5l 24
  98. yolov5x 16
  99. ```
  100. <img src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png" width="900">
  101. ## Citation
  102. [![DOI](https://zenodo.org/badge/264818686.svg)](https://zenodo.org/badge/latestdoi/264818686)
  103. ## About Us
  104. Ultralytics is a U.S.-based particle physics and AI startup with over 6 years of expertise supporting government, academic and business clients. We offer a wide range of vision AI services, spanning from simple expert advice up to delivery of fully customized, end-to-end production solutions, including:
  105. - **Cloud-based AI** systems operating on **hundreds of HD video streams in realtime.**
  106. - **Edge AI** integrated into custom iOS and Android apps for realtime **30 FPS video inference.**
  107. - **Custom data training**, hyperparameter evolution, and model exportation to any destination.
  108. For business inquiries and professional support requests please visit us at https://www.ultralytics.com.
  109. ## Contact
  110. **Issues should be raised directly in the repository.** For business inquiries or professional support requests please visit https://www.ultralytics.com or email Glenn Jocher at glenn.jocher@ultralytics.com.