|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224 |
- import argparse
-
- import yaml
-
- from models.common import *
-
-
- class Detect(nn.Module):
- def __init__(self, nc=80, anchors=()): # detection layer
- super(Detect, self).__init__()
- self.stride = None # strides computed during build
- self.nc = nc # number of classes
- self.no = nc + 5 # number of outputs per anchor
- self.nl = len(anchors) # number of detection layers
- self.na = len(anchors[0]) // 2 # number of anchors
- self.grid = [torch.zeros(1)] * self.nl # init grid
- a = torch.tensor(anchors).float().view(self.nl, -1, 2)
- self.register_buffer('anchors', a) # shape(nl,na,2)
- self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2)
- self.export = False # onnx export
-
- def forward(self, x):
- x = x.copy() # for profiling
- z = [] # inference output
- self.training |= self.export
- for i in range(self.nl):
- bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
- x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
-
- if not self.training: # inference
- if self.grid[i].shape[2:4] != x[i].shape[2:4]:
- self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
-
- y = x[i].sigmoid()
- y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i].to(x[i].device)) * self.stride[i] # xy
- y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
- z.append(y.view(bs, -1, self.no))
-
- return x if self.training else (torch.cat(z, 1), x)
-
- @staticmethod
- def _make_grid(nx=20, ny=20):
- yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
- return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
-
-
- class Model(nn.Module):
- def __init__(self, model_yaml='yolov5s.yaml'): # cfg, number of classes, depth-width gains
- super(Model, self).__init__()
- with open(model_yaml) as f:
- self.md = yaml.load(f, Loader=yaml.FullLoader) # model dict
-
- # Define model
- self.model, self.save, ch = parse_model(self.md, ch=[3]) # model, savelist, ch_out
- # print([x.shape for x in self.forward(torch.zeros(1, 3, 64, 64))])
-
- # Build strides, anchors
- m = self.model[-1] # Detect()
- m.stride = torch.tensor([64 / x.shape[-2] for x in self.forward(torch.zeros(1, 3, 64, 64))]) # forward
- m.anchors /= m.stride.view(-1, 1, 1)
- self.stride = m.stride
-
- # Init weights, biases
- torch_utils.initialize_weights(self)
- self._initialize_biases() # only run once
- torch_utils.model_info(self)
- print('')
-
- def forward(self, x, augment=False, profile=False):
- if augment:
- img_size = x.shape[-2:] # height, width
- s = [0.83, 0.67] # scales
- y = []
- for i, xi in enumerate((x,
- torch_utils.scale_img(x.flip(3), s[0]), # flip-lr and scale
- torch_utils.scale_img(x, s[1]), # scale
- )):
- # cv2.imwrite('img%g.jpg' % i, 255 * xi[0].numpy().transpose((1, 2, 0))[:, :, ::-1])
- y.append(self.forward_once(xi)[0])
-
- y[1][..., :4] /= s[0] # scale
- y[1][..., 0] = img_size[1] - y[1][..., 0] # flip lr
- y[2][..., :4] /= s[1] # scale
- return torch.cat(y, 1), None # augmented inference, train
- else:
- return self.forward_once(x, profile) # single-scale inference, train
-
- def forward_once(self, x, profile=False):
- y, dt = [], [] # outputs
- for m in self.model:
- if m.f != -1: # if not from previous layer
- x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
-
- if profile:
- import thop
- o = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 # FLOPS
- t = torch_utils.time_synchronized()
- for _ in range(10):
- _ = m(x)
- dt.append((torch_utils.time_synchronized() - t) * 100)
- print('%10.1f%10.0f%10.1fms %-40s' % (o, m.np, dt[-1], m.type))
-
- x = m(x) # run
- y.append(x if m.i in self.save else None) # save output
-
- if profile:
- print('%.1fms total' % sum(dt))
- return x
-
- def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency
- # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
- m = self.model[-1] # Detect() module
- for f, s in zip(m.f, m.stride): # from
- mi = self.model[f % m.i]
- b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)
- b[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
- b[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls
- mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
-
- def _print_biases(self):
- m = self.model[-1] # Detect() module
- for f in sorted([x % m.i for x in m.f]): # from
- b = self.model[f].bias.detach().view(m.na, -1).T # conv.bias(255) to (3,85)
- print(('%g Conv2d.bias:' + '%10.3g' * 6) % (f, *b[:5].mean(1).tolist(), b[5:].mean()))
-
- def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers
- print('Fusing layers...')
- for m in self.model.modules():
- if type(m) is Conv:
- m.conv = torch_utils.fuse_conv_and_bn(m.conv, m.bn) # update conv
- m.bn = None # remove batchnorm
- m.forward = m.fuseforward # update forward
- torch_utils.model_info(self)
-
-
- def parse_model(md, ch): # model_dict, input_channels(3)
- print('\n%3s%15s%3s%10s %-40s%-30s' % ('', 'from', 'n', 'params', 'module', 'arguments'))
- anchors, nc, gd, gw = md['anchors'], md['nc'], md['depth_multiple'], md['width_multiple']
- na = (len(anchors[0]) // 2) # number of anchors
- no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
-
- layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
- for i, (f, n, m, args) in enumerate(md['backbone'] + md['head']): # from, number, module, args
- m = eval(m) if isinstance(m, str) else m # eval strings
- for j, a in enumerate(args):
- try:
- args[j] = eval(a) if isinstance(a, str) else a # eval strings
- except:
- pass
-
- n = max(round(n * gd), 1) if n > 1 else n # depth gain
- if m in [nn.Conv2d, Conv, Bottleneck, SPP, DWConv, MixConv2d, Focus, ConvPlus, BottleneckCSP, BottleneckLight]:
- c1, c2 = ch[f], args[0]
-
- # Normal
- # if i > 0 and args[0] != no: # channel expansion factor
- # ex = 1.75 # exponential (default 2.0)
- # e = math.log(c2 / ch[1]) / math.log(2)
- # c2 = int(ch[1] * ex ** e)
- # if m != Focus:
- c2 = make_divisible(c2 * gw, 8) if c2 != no else c2
-
- # Experimental
- # if i > 0 and args[0] != no: # channel expansion factor
- # ex = 1 + gw # exponential (default 2.0)
- # ch1 = 32 # ch[1]
- # e = math.log(c2 / ch1) / math.log(2) # level 1-n
- # c2 = int(ch1 * ex ** e)
- # if m != Focus:
- # c2 = make_divisible(c2, 8) if c2 != no else c2
-
- args = [c1, c2, *args[1:]]
- if m is BottleneckCSP:
- args.insert(2, n)
- n = 1
- elif m is nn.BatchNorm2d:
- args = [ch[f]]
- elif m is Concat:
- c2 = sum([ch[x] for x in f])
- elif m is Origami:
- c2 = ch[f] * 5
- elif m is Detect:
- f = f or list(reversed([(-1 if j == i else j - 1) for j, x in enumerate(ch) if x == no]))
- else:
- c2 = ch[f]
-
- m_ = nn.Sequential(*[m(*args) for _ in range(n)]) if n > 1 else m(*args) # module
- t = str(m)[8:-2].replace('__main__.', '') # module type
- np = sum([x.numel() for x in m_.parameters()]) # number params
- m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
- print('%3s%15s%3s%10.0f %-40s%-30s' % (i, f, n, np, t, args)) # print
- save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
- layers.append(m_)
- ch.append(c2)
- return nn.Sequential(*layers), sorted(save), ch
-
-
- if __name__ == '__main__':
- parser = argparse.ArgumentParser()
- parser.add_argument('--cfg', type=str, default='yolov5s.yaml', help='model.yaml')
- parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
- opt = parser.parse_args()
- opt.cfg = glob.glob('./**/' + opt.cfg, recursive=True)[0] # find file
- device = torch_utils.select_device(opt.device)
-
- # Create model
- model = Model(opt.cfg).to(device)
- model.train()
-
- # Profile
- # img = torch.rand(8 if torch.cuda.is_available() else 1, 3, 640, 640).to(device)
- # y = model(img, profile=True)
- # print([y[0].shape] + [x.shape for x in y[1]])
-
- # ONNX export
- # model.model[-1].export = True
- # torch.onnx.export(model, img, f.replace('.yaml', '.onnx'), verbose=True, opset_version=11)
-
- # Tensorboard
- # from torch.utils.tensorboard import SummaryWriter
- # tb_writer = SummaryWriter()
- # print("Run 'tensorboard --logdir=models/runs' to view tensorboard at http://localhost:6006/")
- # tb_writer.add_graph(model.model, img) # add model to tensorboard
- # tb_writer.add_image('test', img[0], dataformats='CWH') # add model to tensorboard
|