- # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
- """
- PyTorch utils
- """
-
- import math
- import os
- import platform
- import subprocess
- import time
- import warnings
- from contextlib import contextmanager
- from copy import deepcopy
- from pathlib import Path
-
- import torch
- import torch.distributed as dist
- import torch.nn as nn
- import torch.nn.functional as F
-
- from utils.general import LOGGER, file_date, git_describe
-
- try:
- import thop # for FLOPs computation
- except ImportError:
- thop = None
-
- # Suppress PyTorch warnings
- warnings.filterwarnings('ignore', message='User provided device_type of \'cuda\', but CUDA is not available. Disabling')
-
-
- @contextmanager
- def torch_distributed_zero_first(local_rank: int):
- # Decorator to make all processes in distributed training wait for each local_master to do something
- if local_rank not in [-1, 0]:
- dist.barrier(device_ids=[local_rank])
- yield
- if local_rank == 0:
- dist.barrier(device_ids=[0])
-
-
- def device_count():
- # Returns number of CUDA devices available. Safe version of torch.cuda.device_count(). Supports Linux and Windows
- assert platform.system() in ('Linux', 'Windows'), 'device_count() only supported on Linux or Windows'
- try:
- cmd = 'nvidia-smi -L | wc -l' if platform.system() == 'Linux' else 'nvidia-smi -L | find /c /v ""' # Windows
- return int(subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1])
- except Exception:
- return 0
-
-
- def select_device(device='', batch_size=0, newline=True):
- # device = None or 'cpu' or 0 or '0' or '0,1,2,3'
- s = f'YOLOv5 🚀 {git_describe() or file_date()} Python-{platform.python_version()} torch-{torch.__version__} '
- device = str(device).strip().lower().replace('cuda:', '').replace('none', '') # to string, 'cuda:0' to '0'
- cpu = device == 'cpu'
- mps = device == 'mps' # Apple Metal Performance Shaders (MPS)
- if cpu or mps:
- os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # force torch.cuda.is_available() = False
- elif device: # non-cpu device requested
- os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable - must be before assert is_available()
- assert torch.cuda.is_available() and torch.cuda.device_count() >= len(device.replace(',', '')), \
- f"Invalid CUDA '--device {device}' requested, use '--device cpu' or pass valid CUDA device(s)"
-
- cuda = not cpu and torch.cuda.is_available()
- if cuda:
- devices = device.split(',') if device else '0' # range(torch.cuda.device_count()) # i.e. 0,1,6,7
- n = len(devices) # device count
- if n > 1 and batch_size > 0: # check batch_size is divisible by device_count
- assert batch_size % n == 0, f'batch-size {batch_size} not multiple of GPU count {n}'
- space = ' ' * (len(s) + 1)
- for i, d in enumerate(devices):
- p = torch.cuda.get_device_properties(i)
- s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / (1 << 20):.0f}MiB)\n" # bytes to MB
- elif mps:
- s += 'MPS\n'
- else:
- s += 'CPU\n'
-
- if not newline:
- s = s.rstrip()
- LOGGER.info(s.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else s) # emoji-safe
- return torch.device('cuda:0' if cuda else 'mps' if mps else 'cpu')
-
-
- def time_sync():
- # PyTorch-accurate time
- if torch.cuda.is_available():
- torch.cuda.synchronize()
- return time.time()
-
-
- def profile(input, ops, n=10, device=None):
- # YOLOv5 speed/memory/FLOPs profiler
- #
- # Usage:
- # input = torch.randn(16, 3, 640, 640)
- # m1 = lambda x: x * torch.sigmoid(x)
- # m2 = nn.SiLU()
- # profile(input, [m1, m2], n=100) # profile over 100 iterations
-
- results = []
- if not isinstance(device, torch.device):
- device = select_device(device)
- print(f"{'Params':>12s}{'GFLOPs':>12s}{'GPU_mem (GB)':>14s}{'forward (ms)':>14s}{'backward (ms)':>14s}"
- f"{'input':>24s}{'output':>24s}")
-
- for x in input if isinstance(input, list) else [input]:
- x = x.to(device)
- x.requires_grad = True
- for m in ops if isinstance(ops, list) else [ops]:
- m = m.to(device) if hasattr(m, 'to') else m # device
- m = m.half() if hasattr(m, 'half') and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m
- tf, tb, t = 0, 0, [0, 0, 0] # dt forward, backward
- try:
- flops = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 # GFLOPs
- except Exception:
- flops = 0
-
- try:
- for _ in range(n):
- t[0] = time_sync()
- y = m(x)
- t[1] = time_sync()
- try:
- _ = (sum(yi.sum() for yi in y) if isinstance(y, list) else y).sum().backward()
- t[2] = time_sync()
- except Exception: # no backward method
- # print(e) # for debug
- t[2] = float('nan')
- tf += (t[1] - t[0]) * 1000 / n # ms per op forward
- tb += (t[2] - t[1]) * 1000 / n # ms per op backward
- mem = torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0 # (GB)
- s_in, s_out = (tuple(x.shape) if isinstance(x, torch.Tensor) else 'list' for x in (x, y)) # shapes
- p = sum(x.numel() for x in m.parameters()) if isinstance(m, nn.Module) else 0 # parameters
- print(f'{p:12}{flops:12.4g}{mem:>14.3f}{tf:14.4g}{tb:14.4g}{str(s_in):>24s}{str(s_out):>24s}')
- results.append([p, flops, mem, tf, tb, s_in, s_out])
- except Exception as e:
- print(e)
- results.append(None)
- torch.cuda.empty_cache()
- return results
-
-
- def is_parallel(model):
- # Returns True if model is of type DP or DDP
- return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel)
-
-
- def de_parallel(model):
- # De-parallelize a model: returns single-GPU model if model is of type DP or DDP
- return model.module if is_parallel(model) else model
-
-
- def initialize_weights(model):
- for m in model.modules():
- t = type(m)
- if t is nn.Conv2d:
- pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
- elif t is nn.BatchNorm2d:
- m.eps = 1e-3
- m.momentum = 0.03
- elif t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]:
- m.inplace = True
-
-
- def find_modules(model, mclass=nn.Conv2d):
- # Finds layer indices matching module class 'mclass'
- return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)]
-
-
- def sparsity(model):
- # Return global model sparsity
- a, b = 0, 0
- for p in model.parameters():
- a += p.numel()
- b += (p == 0).sum()
- return b / a
-
-
- def prune(model, amount=0.3):
- # Prune model to requested global sparsity
- import torch.nn.utils.prune as prune
- print('Pruning model... ', end='')
- for name, m in model.named_modules():
- if isinstance(m, nn.Conv2d):
- prune.l1_unstructured(m, name='weight', amount=amount) # prune
- prune.remove(m, 'weight') # make permanent
- print(' %.3g global sparsity' % sparsity(model))
-
-
- def fuse_conv_and_bn(conv, bn):
- # Fuse Conv2d() and BatchNorm2d() layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/
- fusedconv = nn.Conv2d(conv.in_channels,
- conv.out_channels,
- kernel_size=conv.kernel_size,
- stride=conv.stride,
- padding=conv.padding,
- groups=conv.groups,
- bias=True).requires_grad_(False).to(conv.weight.device)
-
- # Prepare filters
- w_conv = conv.weight.clone().view(conv.out_channels, -1)
- w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
- fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.shape))
-
- # Prepare spatial bias
- b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias
- b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
- fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)
-
- return fusedconv
-
-
- def model_info(model, verbose=False, img_size=640):
- # Model information. img_size may be int or list, i.e. img_size=640 or img_size=[640, 320]
- n_p = sum(x.numel() for x in model.parameters()) # number parameters
- n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients
- if verbose:
- print(f"{'layer':>5} {'name':>40} {'gradient':>9} {'parameters':>12} {'shape':>20} {'mu':>10} {'sigma':>10}")
- for i, (name, p) in enumerate(model.named_parameters()):
- name = name.replace('module_list.', '')
- print('%5g %40s %9s %12g %20s %10.3g %10.3g' %
- (i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std()))
-
- try: # FLOPs
- from thop import profile
- stride = max(int(model.stride.max()), 32) if hasattr(model, 'stride') else 32
- img = torch.zeros((1, model.yaml.get('ch', 3), stride, stride), device=next(model.parameters()).device) # input
- flops = profile(deepcopy(model), inputs=(img,), verbose=False)[0] / 1E9 * 2 # stride GFLOPs
- img_size = img_size if isinstance(img_size, list) else [img_size, img_size] # expand if int/float
- fs = ', %.1f GFLOPs' % (flops * img_size[0] / stride * img_size[1] / stride) # 640x640 GFLOPs
- except Exception:
- fs = ''
-
- name = Path(model.yaml_file).stem.replace('yolov5', 'YOLOv5') if hasattr(model, 'yaml_file') else 'Model'
- LOGGER.info(f"{name} summary: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}")
-
-
- def scale_img(img, ratio=1.0, same_shape=False, gs=32): # img(16,3,256,416)
- # Scales img(bs,3,y,x) by ratio constrained to gs-multiple
- if ratio == 1.0:
- return img
- h, w = img.shape[2:]
- s = (int(h * ratio), int(w * ratio)) # new size
- img = F.interpolate(img, size=s, mode='bilinear', align_corners=False) # resize
- if not same_shape: # pad/crop img
- h, w = (math.ceil(x * ratio / gs) * gs for x in (h, w))
- return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean
-
-
- def copy_attr(a, b, include=(), exclude=()):
- # Copy attributes from b to a, options to only include [...] and to exclude [...]
- for k, v in b.__dict__.items():
- if (len(include) and k not in include) or k.startswith('_') or k in exclude:
- continue
- else:
- setattr(a, k, v)
-
-
- class EarlyStopping:
- # YOLOv5 simple early stopper
- def __init__(self, patience=30):
- self.best_fitness = 0.0 # i.e. mAP
- self.best_epoch = 0
- self.patience = patience or float('inf') # epochs to wait after fitness stops improving to stop
- self.possible_stop = False # possible stop may occur next epoch
-
- def __call__(self, epoch, fitness):
- if fitness >= self.best_fitness: # >= 0 to allow for early zero-fitness stage of training
- self.best_epoch = epoch
- self.best_fitness = fitness
- delta = epoch - self.best_epoch # epochs without improvement
- self.possible_stop = delta >= (self.patience - 1) # possible stop may occur next epoch
- stop = delta >= self.patience # stop training if patience exceeded
- if stop:
- LOGGER.info(f'Stopping training early as no improvement observed in last {self.patience} epochs. '
- f'Best results observed at epoch {self.best_epoch}, best model saved as best.pt.\n'
- f'To update EarlyStopping(patience={self.patience}) pass a new patience value, '
- f'i.e. `python train.py --patience 300` or use `--patience 0` to disable EarlyStopping.')
- return stop
-
-
- class ModelEMA:
- """ Updated Exponential Moving Average (EMA) from https://github.com/rwightman/pytorch-image-models
- Keeps a moving average of everything in the model state_dict (parameters and buffers)
- For EMA details see https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
- """
-
- def __init__(self, model, decay=0.9999, tau=2000, updates=0):
- # Create EMA
- self.ema = deepcopy(de_parallel(model)).eval() # FP32 EMA
- # if next(model.parameters()).device.type != 'cpu':
- # self.ema.half() # FP16 EMA
- self.updates = updates # number of EMA updates
- self.decay = lambda x: decay * (1 - math.exp(-x / tau)) # decay exponential ramp (to help early epochs)
- for p in self.ema.parameters():
- p.requires_grad_(False)
-
- def update(self, model):
- # Update EMA parameters
- with torch.no_grad():
- self.updates += 1
- d = self.decay(self.updates)
-
- msd = de_parallel(model).state_dict() # model state_dict
- for k, v in self.ema.state_dict().items():
- if v.dtype.is_floating_point:
- v *= d
- v += (1 - d) * msd[k].detach()
-
- def update_attr(self, model, include=(), exclude=('process_group', 'reducer')):
- # Update EMA attributes
- copy_attr(self.ema, model, include, exclude)
|