Você não pode selecionar mais de 25 tópicos Os tópicos devem começar com uma letra ou um número, podem incluir traços ('-') e podem ter até 35 caracteres.

4 anos atrás
4 anos atrás
precommit: yapf (#5494) * precommit: yapf * align isort * fix # Conflicts: # utils/plots.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update setup.cfg * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update setup.cfg * Update setup.cfg * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update wandb_utils.py * Update augmentations.py * Update setup.cfg * Update yolo.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update val.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * simplify colorstr * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * val run fix * export.py last comma * Update export.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update hubconf.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * PyTorch Hub tuple fix * PyTorch Hub tuple fix2 * PyTorch Hub tuple fix3 * Update setup Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
2 anos atrás
Bug fix mAP0.5-0.95 (#6787) * Improve mAP0.5-0.95 Two changes provided 1. Added limit on the maximum number of detections for each image likewise pycocotools 2. Rework process_batch function Changes #2 solved issue #4251 I also independently encountered the problem described in issue #4251 that the values for the same thresholds do not match when changing the limits in the torch.linspace function. These changes solve this problem. Currently during validation yolov5x.pt model the following results were obtained: from yolov5 validation Class Images Labels P R mAP@.5 mAP@.5:.95: 100%|██████████| 157/157 [01:07<00:00, 2.33it/s] all 5000 36335 0.743 0.626 0.682 0.506 from pycocotools Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.505 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.685 These results are very close, although not completely pass the competition issue #2258. I think it's problem with false positive bboxes matched ignored criteria, but this is not actual for custom datasets and does not require an additional solution. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Remove line to retain pycocotools results * Update val.py * Update val.py * Remove to device op * Higher precision int conversion * Update val.py Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2 anos atrás
4 anos atrás
precommit: yapf (#5494) * precommit: yapf * align isort * fix # Conflicts: # utils/plots.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update setup.cfg * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update setup.cfg * Update setup.cfg * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update wandb_utils.py * Update augmentations.py * Update setup.cfg * Update yolo.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update val.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * simplify colorstr * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * val run fix * export.py last comma * Update export.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update hubconf.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * PyTorch Hub tuple fix * PyTorch Hub tuple fix2 * PyTorch Hub tuple fix3 * Update setup Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
2 anos atrás
precommit: yapf (#5494) * precommit: yapf * align isort * fix # Conflicts: # utils/plots.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update setup.cfg * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update setup.cfg * Update setup.cfg * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update wandb_utils.py * Update augmentations.py * Update setup.cfg * Update yolo.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update val.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * simplify colorstr * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * val run fix * export.py last comma * Update export.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update hubconf.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * PyTorch Hub tuple fix * PyTorch Hub tuple fix2 * PyTorch Hub tuple fix3 * Update setup Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
2 anos atrás
4 anos atrás
4 anos atrás
4 anos atrás
4 anos atrás
4 anos atrás
4 anos atrás
precommit: yapf (#5494) * precommit: yapf * align isort * fix # Conflicts: # utils/plots.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update setup.cfg * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update setup.cfg * Update setup.cfg * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update wandb_utils.py * Update augmentations.py * Update setup.cfg * Update yolo.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update val.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * simplify colorstr * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * val run fix * export.py last comma * Update export.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update hubconf.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * PyTorch Hub tuple fix * PyTorch Hub tuple fix2 * PyTorch Hub tuple fix3 * Update setup Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
2 anos atrás
4 anos atrás
Merge `develop` branch into `master` (#3518) * update ci-testing.yml (#3322) * update ci-testing.yml * update greetings.yml * bring back os matrix * update ci-testing.yml (#3322) * update ci-testing.yml * update greetings.yml * bring back os matrix * Enable direct `--weights URL` definition (#3373) * Enable direct `--weights URL` definition @KalenMike this PR will enable direct --weights URL definition. Example use case: ``` python train.py --weights https://storage.googleapis.com/bucket/dir/model.pt ``` * cleanup * bug fixes * weights = attempt_download(weights) * Update experimental.py * Update hubconf.py * return bug fix * comment mirror * min_bytes * Update tutorial.ipynb (#3368) add Open in Kaggle badge * `cv2.imread(img, -1)` for IMREAD_UNCHANGED (#3379) * Update datasets.py * comment Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * COCO evolution fix (#3388) * COCO evolution fix * cleanup * update print * print fix * Create `is_pip()` function (#3391) Returns `True` if file is part of pip package. Useful for contextual behavior modification. ```python def is_pip(): # Is file in a pip package? return 'site-packages' in Path(__file__).absolute().parts ``` * Revert "`cv2.imread(img, -1)` for IMREAD_UNCHANGED (#3379)" (#3395) This reverts commit 21a9607e00f1365b21d8c4bd81bdbf5fc0efea24. * Update FLOPs description (#3422) * Update README.md * Changing FLOPS to FLOPs. Co-authored-by: BuildTools <unconfigured@null.spigotmc.org> * Parse URL authentication (#3424) * Parse URL authentication * urllib.parse.unquote() * improved error handling * improved error handling * remove %3F * update check_file() * Add FLOPs title to table (#3453) * Suppress jit trace warning + graph once (#3454) * Suppress jit trace warning + graph once Suppress harmless jit trace warning on TensorBoard add_graph call. Also fix multiple add_graph() calls bug, now only on batch 0. * Update train.py * Update MixUp augmentation `alpha=beta=32.0` (#3455) Per VOC empirical results https://github.com/ultralytics/yolov5/issues/3380#issuecomment-853001307 by @developer0hye * Add `timeout()` class (#3460) * Add `timeout()` class * rearrange order * Faster HSV augmentation (#3462) remove datatype conversion process that can be skipped * Add `check_git_status()` 5 second timeout (#3464) * Add check_git_status() 5 second timeout This should prevent the SSH Git bug that we were discussing @KalenMike * cleanup * replace timeout with check_output built-in timeout * Improved `check_requirements()` offline-handling (#3466) Improve robustness of `check_requirements()` function to offline environments (do not attempt pip installs when offline). * Add `output_names` argument for ONNX export with dynamic axes (#3456) * Add output names & dynamic axes for onnx export Add output_names and dynamic_axes names for all outputs in torch.onnx.export. The first four outputs of the model will have names output0, output1, output2, output3 * use first output only + cleanup Co-authored-by: Samridha Shrestha <samridha.shrestha@g42.ai> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Revert FP16 `test.py` and `detect.py` inference to FP32 default (#3423) * fixed inference bug ,while use half precision * replace --use-half with --half * replace space and PEP8 in detect.py * PEP8 detect.py * update --half help comment * Update test.py * revert space Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Add additional links/resources to stale.yml message (#3467) * Update stale.yml * cleanup * Update stale.yml * reformat * Update stale.yml HUB URL (#3468) * Stale `github.actor` bug fix (#3483) * Explicit `model.eval()` call `if opt.train=False` (#3475) * call model.eval() when opt.train is False call model.eval() when opt.train is False * single-line if statement * cleanup Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * check_requirements() exclude `opencv-python` (#3495) Fix for 3rd party or contrib versions of installed OpenCV as in https://github.com/ultralytics/yolov5/issues/3494. * Earlier `assert` for cpu and half option (#3508) * early assert for cpu and half option early assert for cpu and half option * Modified comment Modified comment * Update tutorial.ipynb (#3510) * Reduce test.py results spacing (#3511) * Update README.md (#3512) * Update README.md Minor modifications * 850 width * Update greetings.yml revert greeting change as PRs will now merge to master. Co-authored-by: Piotr Skalski <SkalskiP@users.noreply.github.com> Co-authored-by: SkalskiP <piotr.skalski92@gmail.com> Co-authored-by: Peretz Cohen <pizzaz93@users.noreply.github.com> Co-authored-by: tudoulei <34886368+tudoulei@users.noreply.github.com> Co-authored-by: chocosaj <chocosaj@users.noreply.github.com> Co-authored-by: BuildTools <unconfigured@null.spigotmc.org> Co-authored-by: Yonghye Kwon <developer.0hye@gmail.com> Co-authored-by: Sam_S <SamSamhuns@users.noreply.github.com> Co-authored-by: Samridha Shrestha <samridha.shrestha@g42.ai> Co-authored-by: edificewang <609552430@qq.com>
3 anos atrás
4 anos atrás
4 anos atrás
4 anos atrás
4 anos atrás
4 anos atrás
4 anos atrás
4 anos atrás
4 anos atrás
4 anos atrás
4 anos atrás
Bug fix mAP0.5-0.95 (#6787) * Improve mAP0.5-0.95 Two changes provided 1. Added limit on the maximum number of detections for each image likewise pycocotools 2. Rework process_batch function Changes #2 solved issue #4251 I also independently encountered the problem described in issue #4251 that the values for the same thresholds do not match when changing the limits in the torch.linspace function. These changes solve this problem. Currently during validation yolov5x.pt model the following results were obtained: from yolov5 validation Class Images Labels P R mAP@.5 mAP@.5:.95: 100%|██████████| 157/157 [01:07<00:00, 2.33it/s] all 5000 36335 0.743 0.626 0.682 0.506 from pycocotools Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.505 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.685 These results are very close, although not completely pass the competition issue #2258. I think it's problem with false positive bboxes matched ignored criteria, but this is not actual for custom datasets and does not require an additional solution. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Remove line to retain pycocotools results * Update val.py * Update val.py * Remove to device op * Higher precision int conversion * Update val.py Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2 anos atrás
4 anos atrás
Merge `develop` branch into `master` (#3518) * update ci-testing.yml (#3322) * update ci-testing.yml * update greetings.yml * bring back os matrix * update ci-testing.yml (#3322) * update ci-testing.yml * update greetings.yml * bring back os matrix * Enable direct `--weights URL` definition (#3373) * Enable direct `--weights URL` definition @KalenMike this PR will enable direct --weights URL definition. Example use case: ``` python train.py --weights https://storage.googleapis.com/bucket/dir/model.pt ``` * cleanup * bug fixes * weights = attempt_download(weights) * Update experimental.py * Update hubconf.py * return bug fix * comment mirror * min_bytes * Update tutorial.ipynb (#3368) add Open in Kaggle badge * `cv2.imread(img, -1)` for IMREAD_UNCHANGED (#3379) * Update datasets.py * comment Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * COCO evolution fix (#3388) * COCO evolution fix * cleanup * update print * print fix * Create `is_pip()` function (#3391) Returns `True` if file is part of pip package. Useful for contextual behavior modification. ```python def is_pip(): # Is file in a pip package? return 'site-packages' in Path(__file__).absolute().parts ``` * Revert "`cv2.imread(img, -1)` for IMREAD_UNCHANGED (#3379)" (#3395) This reverts commit 21a9607e00f1365b21d8c4bd81bdbf5fc0efea24. * Update FLOPs description (#3422) * Update README.md * Changing FLOPS to FLOPs. Co-authored-by: BuildTools <unconfigured@null.spigotmc.org> * Parse URL authentication (#3424) * Parse URL authentication * urllib.parse.unquote() * improved error handling * improved error handling * remove %3F * update check_file() * Add FLOPs title to table (#3453) * Suppress jit trace warning + graph once (#3454) * Suppress jit trace warning + graph once Suppress harmless jit trace warning on TensorBoard add_graph call. Also fix multiple add_graph() calls bug, now only on batch 0. * Update train.py * Update MixUp augmentation `alpha=beta=32.0` (#3455) Per VOC empirical results https://github.com/ultralytics/yolov5/issues/3380#issuecomment-853001307 by @developer0hye * Add `timeout()` class (#3460) * Add `timeout()` class * rearrange order * Faster HSV augmentation (#3462) remove datatype conversion process that can be skipped * Add `check_git_status()` 5 second timeout (#3464) * Add check_git_status() 5 second timeout This should prevent the SSH Git bug that we were discussing @KalenMike * cleanup * replace timeout with check_output built-in timeout * Improved `check_requirements()` offline-handling (#3466) Improve robustness of `check_requirements()` function to offline environments (do not attempt pip installs when offline). * Add `output_names` argument for ONNX export with dynamic axes (#3456) * Add output names & dynamic axes for onnx export Add output_names and dynamic_axes names for all outputs in torch.onnx.export. The first four outputs of the model will have names output0, output1, output2, output3 * use first output only + cleanup Co-authored-by: Samridha Shrestha <samridha.shrestha@g42.ai> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Revert FP16 `test.py` and `detect.py` inference to FP32 default (#3423) * fixed inference bug ,while use half precision * replace --use-half with --half * replace space and PEP8 in detect.py * PEP8 detect.py * update --half help comment * Update test.py * revert space Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Add additional links/resources to stale.yml message (#3467) * Update stale.yml * cleanup * Update stale.yml * reformat * Update stale.yml HUB URL (#3468) * Stale `github.actor` bug fix (#3483) * Explicit `model.eval()` call `if opt.train=False` (#3475) * call model.eval() when opt.train is False call model.eval() when opt.train is False * single-line if statement * cleanup Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * check_requirements() exclude `opencv-python` (#3495) Fix for 3rd party or contrib versions of installed OpenCV as in https://github.com/ultralytics/yolov5/issues/3494. * Earlier `assert` for cpu and half option (#3508) * early assert for cpu and half option early assert for cpu and half option * Modified comment Modified comment * Update tutorial.ipynb (#3510) * Reduce test.py results spacing (#3511) * Update README.md (#3512) * Update README.md Minor modifications * 850 width * Update greetings.yml revert greeting change as PRs will now merge to master. Co-authored-by: Piotr Skalski <SkalskiP@users.noreply.github.com> Co-authored-by: SkalskiP <piotr.skalski92@gmail.com> Co-authored-by: Peretz Cohen <pizzaz93@users.noreply.github.com> Co-authored-by: tudoulei <34886368+tudoulei@users.noreply.github.com> Co-authored-by: chocosaj <chocosaj@users.noreply.github.com> Co-authored-by: BuildTools <unconfigured@null.spigotmc.org> Co-authored-by: Yonghye Kwon <developer.0hye@gmail.com> Co-authored-by: Sam_S <SamSamhuns@users.noreply.github.com> Co-authored-by: Samridha Shrestha <samridha.shrestha@g42.ai> Co-authored-by: edificewang <609552430@qq.com>
3 anos atrás
4 anos atrás
4 anos atrás
4 anos atrás
4 anos atrás
4 anos atrás
4 anos atrás
4 anos atrás
4 anos atrás
4 anos atrás
4 anos atrás
4 anos atrás
4 anos atrás
4 anos atrás
4 anos atrás
4 anos atrás
4 anos atrás
4 anos atrás
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394
  1. # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
  2. """
  3. Validate a trained YOLOv5 model accuracy on a custom dataset
  4. Usage:
  5. $ python path/to/val.py --weights yolov5s.pt --data coco128.yaml --img 640
  6. Usage - formats:
  7. $ python path/to/val.py --weights yolov5s.pt # PyTorch
  8. yolov5s.torchscript # TorchScript
  9. yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn
  10. yolov5s.xml # OpenVINO
  11. yolov5s.engine # TensorRT
  12. yolov5s.mlmodel # CoreML (macOS-only)
  13. yolov5s_saved_model # TensorFlow SavedModel
  14. yolov5s.pb # TensorFlow GraphDef
  15. yolov5s.tflite # TensorFlow Lite
  16. yolov5s_edgetpu.tflite # TensorFlow Edge TPU
  17. """
  18. import argparse
  19. import json
  20. import os
  21. import sys
  22. from pathlib import Path
  23. import numpy as np
  24. import torch
  25. from tqdm import tqdm
  26. FILE = Path(__file__).resolve()
  27. ROOT = FILE.parents[0] # YOLOv5 root directory
  28. if str(ROOT) not in sys.path:
  29. sys.path.append(str(ROOT)) # add ROOT to PATH
  30. ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
  31. from models.common import DetectMultiBackend
  32. from utils.callbacks import Callbacks
  33. from utils.dataloaders import create_dataloader
  34. from utils.general import (LOGGER, check_dataset, check_img_size, check_requirements, check_yaml,
  35. coco80_to_coco91_class, colorstr, increment_path, non_max_suppression, print_args,
  36. scale_coords, xywh2xyxy, xyxy2xywh)
  37. from utils.metrics import ConfusionMatrix, ap_per_class, box_iou
  38. from utils.plots import output_to_target, plot_images, plot_val_study
  39. from utils.torch_utils import select_device, time_sync
  40. def save_one_txt(predn, save_conf, shape, file):
  41. # Save one txt result
  42. gn = torch.tensor(shape)[[1, 0, 1, 0]] # normalization gain whwh
  43. for *xyxy, conf, cls in predn.tolist():
  44. xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
  45. line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
  46. with open(file, 'a') as f:
  47. f.write(('%g ' * len(line)).rstrip() % line + '\n')
  48. def save_one_json(predn, jdict, path, class_map):
  49. # Save one JSON result {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}
  50. image_id = int(path.stem) if path.stem.isnumeric() else path.stem
  51. box = xyxy2xywh(predn[:, :4]) # xywh
  52. box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
  53. for p, b in zip(predn.tolist(), box.tolist()):
  54. jdict.append({
  55. 'image_id': image_id,
  56. 'category_id': class_map[int(p[5])],
  57. 'bbox': [round(x, 3) for x in b],
  58. 'score': round(p[4], 5)})
  59. def process_batch(detections, labels, iouv):
  60. """
  61. Return correct predictions matrix. Both sets of boxes are in (x1, y1, x2, y2) format.
  62. Arguments:
  63. detections (Array[N, 6]), x1, y1, x2, y2, conf, class
  64. labels (Array[M, 5]), class, x1, y1, x2, y2
  65. Returns:
  66. correct (Array[N, 10]), for 10 IoU levels
  67. """
  68. correct = torch.zeros(detections.shape[0], iouv.shape[0], dtype=torch.bool, device=iouv.device)
  69. iou = box_iou(labels[:, 1:], detections[:, :4])
  70. correct_class = labels[:, 0:1] == detections[:, 5]
  71. for i in range(len(iouv)):
  72. x = torch.where((iou >= iouv[i]) & correct_class) # IoU > threshold and classes match
  73. if x[0].shape[0]:
  74. matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy() # [label, detect, iou]
  75. if x[0].shape[0] > 1:
  76. matches = matches[matches[:, 2].argsort()[::-1]]
  77. matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
  78. # matches = matches[matches[:, 2].argsort()[::-1]]
  79. matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
  80. correct[matches[:, 1].astype(int), i] = True
  81. return correct
  82. @torch.no_grad()
  83. def run(
  84. data,
  85. weights=None, # model.pt path(s)
  86. batch_size=32, # batch size
  87. imgsz=640, # inference size (pixels)
  88. conf_thres=0.001, # confidence threshold
  89. iou_thres=0.6, # NMS IoU threshold
  90. task='val', # train, val, test, speed or study
  91. device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
  92. workers=8, # max dataloader workers (per RANK in DDP mode)
  93. single_cls=False, # treat as single-class dataset
  94. augment=False, # augmented inference
  95. verbose=False, # verbose output
  96. save_txt=False, # save results to *.txt
  97. save_hybrid=False, # save label+prediction hybrid results to *.txt
  98. save_conf=False, # save confidences in --save-txt labels
  99. save_json=False, # save a COCO-JSON results file
  100. project=ROOT / 'runs/val', # save to project/name
  101. name='exp', # save to project/name
  102. exist_ok=False, # existing project/name ok, do not increment
  103. half=True, # use FP16 half-precision inference
  104. dnn=False, # use OpenCV DNN for ONNX inference
  105. model=None,
  106. dataloader=None,
  107. save_dir=Path(''),
  108. plots=True,
  109. callbacks=Callbacks(),
  110. compute_loss=None,
  111. ):
  112. # Initialize/load model and set device
  113. training = model is not None
  114. if training: # called by train.py
  115. device, pt, jit, engine = next(model.parameters()).device, True, False, False # get model device, PyTorch model
  116. half &= device.type != 'cpu' # half precision only supported on CUDA
  117. model.half() if half else model.float()
  118. else: # called directly
  119. device = select_device(device, batch_size=batch_size)
  120. # Directories
  121. save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
  122. (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
  123. # Load model
  124. model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
  125. stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine
  126. imgsz = check_img_size(imgsz, s=stride) # check image size
  127. half = model.fp16 # FP16 supported on limited backends with CUDA
  128. if engine:
  129. batch_size = model.batch_size
  130. else:
  131. device = model.device
  132. if not (pt or jit):
  133. batch_size = 1 # export.py models default to batch-size 1
  134. LOGGER.info(f'Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models')
  135. # Data
  136. data = check_dataset(data) # check
  137. # Configure
  138. model.eval()
  139. cuda = device.type != 'cpu'
  140. is_coco = isinstance(data.get('val'), str) and data['val'].endswith(f'coco{os.sep}val2017.txt') # COCO dataset
  141. nc = 1 if single_cls else int(data['nc']) # number of classes
  142. iouv = torch.linspace(0.5, 0.95, 10, device=device) # iou vector for mAP@0.5:0.95
  143. niou = iouv.numel()
  144. # Dataloader
  145. if not training:
  146. if pt and not single_cls: # check --weights are trained on --data
  147. ncm = model.model.nc
  148. assert ncm == nc, f'{weights[0]} ({ncm} classes) trained on different --data than what you passed ({nc} ' \
  149. f'classes). Pass correct combination of --weights and --data that are trained together.'
  150. model.warmup(imgsz=(1 if pt else batch_size, 3, imgsz, imgsz)) # warmup
  151. pad = 0.0 if task in ('speed', 'benchmark') else 0.5
  152. rect = False if task == 'benchmark' else pt # square inference for benchmarks
  153. task = task if task in ('train', 'val', 'test') else 'val' # path to train/val/test images
  154. dataloader = create_dataloader(data[task],
  155. imgsz,
  156. batch_size,
  157. stride,
  158. single_cls,
  159. pad=pad,
  160. rect=rect,
  161. workers=workers,
  162. prefix=colorstr(f'{task}: '))[0]
  163. seen = 0
  164. confusion_matrix = ConfusionMatrix(nc=nc)
  165. names = {k: v for k, v in enumerate(model.names if hasattr(model, 'names') else model.module.names)}
  166. class_map = coco80_to_coco91_class() if is_coco else list(range(1000))
  167. s = ('%20s' + '%11s' * 6) % ('Class', 'Images', 'Labels', 'P', 'R', 'mAP@.5', 'mAP@.5:.95')
  168. dt, p, r, f1, mp, mr, map50, map = [0.0, 0.0, 0.0], 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
  169. loss = torch.zeros(3, device=device)
  170. jdict, stats, ap, ap_class = [], [], [], []
  171. callbacks.run('on_val_start')
  172. pbar = tqdm(dataloader, desc=s, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}') # progress bar
  173. for batch_i, (im, targets, paths, shapes) in enumerate(pbar):
  174. callbacks.run('on_val_batch_start')
  175. t1 = time_sync()
  176. if cuda:
  177. im = im.to(device, non_blocking=True)
  178. targets = targets.to(device)
  179. im = im.half() if half else im.float() # uint8 to fp16/32
  180. im /= 255 # 0 - 255 to 0.0 - 1.0
  181. nb, _, height, width = im.shape # batch size, channels, height, width
  182. t2 = time_sync()
  183. dt[0] += t2 - t1
  184. # Inference
  185. out, train_out = model(im) if training else model(im, augment=augment, val=True) # inference, loss outputs
  186. dt[1] += time_sync() - t2
  187. # Loss
  188. if compute_loss:
  189. loss += compute_loss([x.float() for x in train_out], targets)[1] # box, obj, cls
  190. # NMS
  191. targets[:, 2:] *= torch.tensor((width, height, width, height), device=device) # to pixels
  192. lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling
  193. t3 = time_sync()
  194. out = non_max_suppression(out, conf_thres, iou_thres, labels=lb, multi_label=True, agnostic=single_cls)
  195. dt[2] += time_sync() - t3
  196. # Metrics
  197. for si, pred in enumerate(out):
  198. labels = targets[targets[:, 0] == si, 1:]
  199. nl, npr = labels.shape[0], pred.shape[0] # number of labels, predictions
  200. path, shape = Path(paths[si]), shapes[si][0]
  201. correct = torch.zeros(npr, niou, dtype=torch.bool, device=device) # init
  202. seen += 1
  203. if npr == 0:
  204. if nl:
  205. stats.append((correct, *torch.zeros((3, 0), device=device)))
  206. continue
  207. # Predictions
  208. if single_cls:
  209. pred[:, 5] = 0
  210. predn = pred.clone()
  211. scale_coords(im[si].shape[1:], predn[:, :4], shape, shapes[si][1]) # native-space pred
  212. # Evaluate
  213. if nl:
  214. tbox = xywh2xyxy(labels[:, 1:5]) # target boxes
  215. scale_coords(im[si].shape[1:], tbox, shape, shapes[si][1]) # native-space labels
  216. labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels
  217. correct = process_batch(predn, labelsn, iouv)
  218. if plots:
  219. confusion_matrix.process_batch(predn, labelsn)
  220. stats.append((correct, pred[:, 4], pred[:, 5], labels[:, 0])) # (correct, conf, pcls, tcls)
  221. # Save/log
  222. if save_txt:
  223. save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / (path.stem + '.txt'))
  224. if save_json:
  225. save_one_json(predn, jdict, path, class_map) # append to COCO-JSON dictionary
  226. callbacks.run('on_val_image_end', pred, predn, path, names, im[si])
  227. # Plot images
  228. if plots and batch_i < 3:
  229. plot_images(im, targets, paths, save_dir / f'val_batch{batch_i}_labels.jpg', names) # labels
  230. plot_images(im, output_to_target(out), paths, save_dir / f'val_batch{batch_i}_pred.jpg', names) # pred
  231. callbacks.run('on_val_batch_end')
  232. # Compute metrics
  233. stats = [torch.cat(x, 0).cpu().numpy() for x in zip(*stats)] # to numpy
  234. if len(stats) and stats[0].any():
  235. tp, fp, p, r, f1, ap, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names)
  236. ap50, ap = ap[:, 0], ap.mean(1) # AP@0.5, AP@0.5:0.95
  237. mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
  238. nt = np.bincount(stats[3].astype(int), minlength=nc) # number of targets per class
  239. else:
  240. nt = torch.zeros(1)
  241. # Print results
  242. pf = '%20s' + '%11i' * 2 + '%11.3g' * 4 # print format
  243. LOGGER.info(pf % ('all', seen, nt.sum(), mp, mr, map50, map))
  244. # Print results per class
  245. if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
  246. for i, c in enumerate(ap_class):
  247. LOGGER.info(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
  248. # Print speeds
  249. t = tuple(x / seen * 1E3 for x in dt) # speeds per image
  250. if not training:
  251. shape = (batch_size, 3, imgsz, imgsz)
  252. LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}' % t)
  253. # Plots
  254. if plots:
  255. confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
  256. callbacks.run('on_val_end')
  257. # Save JSON
  258. if save_json and len(jdict):
  259. w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights
  260. anno_json = str(Path(data.get('path', '../coco')) / 'annotations/instances_val2017.json') # annotations json
  261. pred_json = str(save_dir / f"{w}_predictions.json") # predictions json
  262. LOGGER.info(f'\nEvaluating pycocotools mAP... saving {pred_json}...')
  263. with open(pred_json, 'w') as f:
  264. json.dump(jdict, f)
  265. try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
  266. check_requirements(['pycocotools'])
  267. from pycocotools.coco import COCO
  268. from pycocotools.cocoeval import COCOeval
  269. anno = COCO(anno_json) # init annotations api
  270. pred = anno.loadRes(pred_json) # init predictions api
  271. eval = COCOeval(anno, pred, 'bbox')
  272. if is_coco:
  273. eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.im_files] # image IDs to evaluate
  274. eval.evaluate()
  275. eval.accumulate()
  276. eval.summarize()
  277. map, map50 = eval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5)
  278. except Exception as e:
  279. LOGGER.info(f'pycocotools unable to run: {e}')
  280. # Return results
  281. model.float() # for training
  282. if not training:
  283. s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
  284. LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
  285. maps = np.zeros(nc) + map
  286. for i, c in enumerate(ap_class):
  287. maps[c] = ap[i]
  288. return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
  289. def parse_opt():
  290. parser = argparse.ArgumentParser()
  291. parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
  292. parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model.pt path(s)')
  293. parser.add_argument('--batch-size', type=int, default=32, help='batch size')
  294. parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)')
  295. parser.add_argument('--conf-thres', type=float, default=0.001, help='confidence threshold')
  296. parser.add_argument('--iou-thres', type=float, default=0.6, help='NMS IoU threshold')
  297. parser.add_argument('--task', default='val', help='train, val, test, speed or study')
  298. parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
  299. parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
  300. parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
  301. parser.add_argument('--augment', action='store_true', help='augmented inference')
  302. parser.add_argument('--verbose', action='store_true', help='report mAP by class')
  303. parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
  304. parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt')
  305. parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
  306. parser.add_argument('--save-json', action='store_true', help='save a COCO-JSON results file')
  307. parser.add_argument('--project', default=ROOT / 'runs/val', help='save to project/name')
  308. parser.add_argument('--name', default='exp', help='save to project/name')
  309. parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
  310. parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
  311. parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
  312. opt = parser.parse_args()
  313. opt.data = check_yaml(opt.data) # check YAML
  314. opt.save_json |= opt.data.endswith('coco.yaml')
  315. opt.save_txt |= opt.save_hybrid
  316. print_args(vars(opt))
  317. return opt
  318. def main(opt):
  319. check_requirements(requirements=ROOT / 'requirements.txt', exclude=('tensorboard', 'thop'))
  320. if opt.task in ('train', 'val', 'test'): # run normally
  321. if opt.conf_thres > 0.001: # https://github.com/ultralytics/yolov5/issues/1466
  322. LOGGER.info(f'WARNING: confidence threshold {opt.conf_thres} >> 0.001 will produce invalid mAP values.')
  323. run(**vars(opt))
  324. else:
  325. weights = opt.weights if isinstance(opt.weights, list) else [opt.weights]
  326. opt.half = True # FP16 for fastest results
  327. if opt.task == 'speed': # speed benchmarks
  328. # python val.py --task speed --data coco.yaml --batch 1 --weights yolov5n.pt yolov5s.pt...
  329. opt.conf_thres, opt.iou_thres, opt.save_json = 0.25, 0.45, False
  330. for opt.weights in weights:
  331. run(**vars(opt), plots=False)
  332. elif opt.task == 'study': # speed vs mAP benchmarks
  333. # python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n.pt yolov5s.pt...
  334. for opt.weights in weights:
  335. f = f'study_{Path(opt.data).stem}_{Path(opt.weights).stem}.txt' # filename to save to
  336. x, y = list(range(256, 1536 + 128, 128)), [] # x axis (image sizes), y axis
  337. for opt.imgsz in x: # img-size
  338. LOGGER.info(f'\nRunning {f} --imgsz {opt.imgsz}...')
  339. r, _, t = run(**vars(opt), plots=False)
  340. y.append(r + t) # results and times
  341. np.savetxt(f, y, fmt='%10.4g') # save
  342. os.system('zip -r study.zip study_*.txt')
  343. plot_val_study(x=x) # plot
  344. if __name__ == "__main__":
  345. opt = parse_opt()
  346. main(opt)