Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.

README.md 7.6KB

il y a 4 ans
il y a 4 ans
il y a 4 ans
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110
  1. <a href="https://apps.apple.com/app/id1452689527" target="_blank">
  2. <img src="https://user-images.githubusercontent.com/26833433/82944393-f7644d80-9f4f-11ea-8b87-1a5b04f555f1.jpg" width="1000"></a>
  3. &nbsp
  4. This repository represents Ultralytics open-source research into future object detection methods, and incorporates our lessons learned and best practices evolved over training thousands of models on custom client datasets with our previous YOLO repository https://github.com/ultralytics/yolov3. **All code and models are under active development, and are subject to modification or deletion without notice.** Use at your own risk.
  5. Updates:
  6. - **May 27, 2020**: Public release of repo. yolov3-spp (this repo) is SOTA among all known yolo implementations, yolov5 family will be undergoing architecture research and development over Q2/Q3 2020 to increase performance. Updates may include [CSP](https://github.com/WongKinYiu/CrossStagePartialNetworks) bottlenecks from [yolov4](https://github.com/AlexeyAB/darknet), as well as PANet or BiFPN head features.
  7. - **May 24, 2020**: Training yolov5s/x and yolov3-spp. yolov5m/l suffered early overfitting and also code 137 early docker terminations, cause unknown. yolov5l underperforms yolov3-spp due to earlier overfitting, cause unknown.
  8. - **April 1, 2020**: Begin development of a 100% pytorch scaleable yolov3/4-based group of future models, in small, medium, large and extra large sizes, collectively known as yolov5. Models will be defined by new user-friendly yaml-based configuration files for ease of construction and modification. Datasets will likewise use yaml configuration files. New training platform will be simpler use, harder to break, and more robust to training a wider variety of custom dataset.
  9. ## Ultralytics Professional Support
  10. Ultralytics is a U.S.-based particle physics and AI startup with over 6 years of expertise supporting government, academic and business clients. We offer a wide range of vision AI services, spanning from simple expert advice up to delivery of fully customized, end-to-end production solutions, including:
  11. - **Cloud-based AI** surveillance systems operating on **hundreds of HD video streams in realtime.**
  12. - **Edge AI** integrated into custom iOS and Android apps for realtime **30 FPS video inference.**
  13. - **Custom data training**, hyperparameter evolution, and model exportation to any destination.
  14. For business inquiries and professional support requests please visit us at https://www.ultralytics.com.
  15. ## Pretrained Checkpoints
  16. | Model | AP<sup>val</sup> | AP<sup>test</sup> | AP<sub>50</sub> | Latency<sub>GPU</sub> | FPS<sub>GPU</sub> | | params | FLOPs |
  17. |---------- |------ |------ |------ | -------- | ------| ------ |------ | :------: |
  18. | YOLOv5-s ([ckpt](https://drive.google.com/open?id=1Drs_Aiu7xx6S-ix95f9kNsA6ueKRpN2J)) | 33.1 | 33.0 | 53.3 | **3.3ms** | **303** | | 7.0B | 14.0
  19. | YOLOv5-m ([ckpt](https://drive.google.com/open?id=1Drs_Aiu7xx6S-ix95f9kNsA6ueKRpN2J)) | 41.5 | 41.5 | 61.5 | 5.5ms | 182 | | 25.2B | 50.2
  20. | YOLOv5-l ([ckpt](https://drive.google.com/open?id=1Drs_Aiu7xx6S-ix95f9kNsA6ueKRpN2J)) | 44.2 | 44.5 | 64.3 | 9.7ms | 103 | | 61.8B | 123.1
  21. | YOLOv5-x ([ckpt](https://drive.google.com/open?id=1Drs_Aiu7xx6S-ix95f9kNsA6ueKRpN2J)) | **47.1** | **47.2** | **66.7** | 15.8ms | 63 | | 123.1B | 245.7
  22. | YOLOv3-SPP ([ckpt](https://drive.google.com/open?id=1Drs_Aiu7xx6S-ix95f9kNsA6ueKRpN2J)) | 45.5 | 45.4 | 65.2 | 8.9ms | 112 | | 63.0B | 118.0
  23. ** AP<sup>test</sup> denotes COCO [test-dev2017](http://cocodataset.org/#upload) server results, all other AP results in the table denote val2017 accuracy.
  24. ** All accuracy numbers are for single-model single-scale without ensemble or test-time augmentation. Reproduce by `python test.py --img-size 736 --conf_thres 0.001`
  25. ** Latency<sub>GPU</sub> measures end-to-end latency per image averaged over 5000 COCO val2017 images using a V100 GPU and includes image preprocessing, inference, postprocessing and NMS. Average NMS time included in this chart is 1.6ms/image. Reproduce by `python test.py --img-size 640 --conf_thres 0.1 --batch-size 16`
  26. ** All checkpoints are trained to 300 epochs with default settings and hyperparameters (no autoaugmentation).
  27. ## Requirements
  28. Python 3.7 or later with all `requirements.txt` dependencies installed, including `torch >= 1.5`. To install run:
  29. ```bash
  30. $ pip install -U -r requirements.txt
  31. ```
  32. ## Tutorials
  33. * [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data)
  34. * [Google Colab Notebook](https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb) with training, testing and testing examples
  35. * [GCP Quickstart](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)
  36. * [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart)
  37. ## Inference
  38. Inference can be run on most common media formats. Model [checkpoints](https://drive.google.com/open?id=1Drs_Aiu7xx6S-ix95f9kNsA6ueKRpN2J) are downloaded automatically if available. Results are saved to `./inference/output`.
  39. ```bash
  40. $ python detect.py --source file.jpg # image
  41. file.mp4 # video
  42. ./dir # directory
  43. 0 # webcam
  44. rtsp://170.93.143.139/rtplive/470011e600ef003a004ee33696235daa # rtsp stream
  45. http://112.50.243.8/PLTV/88888888/224/3221225900/1.m3u8 # http stream
  46. ```
  47. To run inference on examples in the `./inference/images` folder:
  48. ```bash
  49. $ python detect.py --source ./inference/images/ --weights yolov5s.pt --conf 0.4
  50. Namespace(agnostic_nms=False, augment=False, classes=None, conf_thres=0.4, device='', fourcc='mp4v', half=False, img_size=640, iou_thres=0.5, output='inference/output', save_txt=False, source='./inference/images/', view_img=False, weights='yolov5s.pt')
  51. Using CUDA device0 _CudaDeviceProperties(name='Tesla P100-PCIE-16GB', total_memory=16280MB)
  52. Downloading https://drive.google.com/uc?export=download&id=1R5T6rIyy3lLwgFXNms8whc-387H0tMQO as yolov5s.pt... Done (2.6s)
  53. image 1/2 inference/images/bus.jpg: 640x512 3 persons, 1 buss, Done. (0.009s)
  54. image 2/2 inference/images/zidane.jpg: 384x640 2 persons, 2 ties, Done. (0.009s)
  55. Results saved to /content/yolov5/inference/output
  56. ```
  57. <img src="https://user-images.githubusercontent.com/26833433/83082816-59e54880-a039-11ea-8abe-ab90cc1ec4b0.jpeg" width="500">
  58. ## Reproduce Our Training
  59. Run commands below. Training takes a few days for yolov5s, to a few weeks for yolov5x on a 2080Ti GPU.
  60. ```bash
  61. $ python train.py --data coco.yaml --cfg yolov5s.yaml --weights '' --batch-size 16
  62. ```
  63. <img src="https://user-images.githubusercontent.com/26833433/82960433-5a191180-9f6f-11ea-85cc-c49dbd1555e1.png" width="900">
  64. ## Reproduce Our Environment
  65. To access an up-to-date working environment (with all dependencies including CUDA/CUDNN, Python and PyTorch preinstalled), consider a:
  66. - **GCP** Deep Learning VM with $300 free credit offer: See our [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)
  67. - **Google Colab Notebook** with 12 hours of free GPU time: [Google Colab Notebook](https://colab.sandbox.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb)
  68. - **Docker Image** from https://hub.docker.com/r/ultralytics/yolov5. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart)
  69. ## Citation
  70. [![DOI](https://zenodo.org/badge/146165888.svg)](https://zenodo.org/badge/latestdoi/146165888)
  71. ## Contact
  72. **Issues should be raised directly in the repository.** For business inquiries or professional support requests please visit us at https://www.ultralytics.com.