You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

val.py 18KB

4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
Add EdgeTPU support (#3630) * Add models/tf.py for TensorFlow and TFLite export * Set auto=False for int8 calibration * Update requirements.txt for TensorFlow and TFLite export * Read anchors directly from PyTorch weights * Add --tf-nms to append NMS in TensorFlow SavedModel and GraphDef export * Remove check_anchor_order, check_file, set_logging from import * Reformat code and optimize imports * Autodownload model and check cfg * update --source path, img-size to 320, single output * Adjust representative_dataset * Put representative dataset in tfl_int8 block * detect.py TF inference * weights to string * weights to string * cleanup tf.py * Add --dynamic-batch-size * Add xywh normalization to reduce calibration error * Update requirements.txt TensorFlow 2.3.1 -> 2.4.0 to avoid int8 quantization error * Fix imports Move C3 from models.experimental to models.common * Add models/tf.py for TensorFlow and TFLite export * Set auto=False for int8 calibration * Update requirements.txt for TensorFlow and TFLite export * Read anchors directly from PyTorch weights * Add --tf-nms to append NMS in TensorFlow SavedModel and GraphDef export * Remove check_anchor_order, check_file, set_logging from import * Reformat code and optimize imports * Autodownload model and check cfg * update --source path, img-size to 320, single output * Adjust representative_dataset * detect.py TF inference * Put representative dataset in tfl_int8 block * weights to string * weights to string * cleanup tf.py * Add --dynamic-batch-size * Add xywh normalization to reduce calibration error * Update requirements.txt TensorFlow 2.3.1 -> 2.4.0 to avoid int8 quantization error * Fix imports Move C3 from models.experimental to models.common * implement C3() and SiLU() * Add TensorFlow and TFLite Detection * Add --tfl-detect for TFLite Detection * Add int8 quantized TFLite inference in detect.py * Add --edgetpu for Edge TPU detection * Fix --img-size to add rectangle TensorFlow and TFLite input * Add --no-tf-nms to detect objects using models combined with TensorFlow NMS * Fix --img-size list type input * Update README.md * Add Android project for TFLite inference * Upgrade TensorFlow v2.3.1 -> v2.4.0 * Disable normalization of xywh * Rewrite names init in detect.py * Change input resolution 640 -> 320 on Android * Disable NNAPI * Update README.me --img 640 -> 320 * Update README.me for Edge TPU * Update README.md * Fix reshape dim to support dynamic batching * Fix reshape dim to support dynamic batching * Add epsilon argument in tf_BN, which is different between TF and PT * Set stride to None if not using PyTorch, and do not warmup without PyTorch * Add list support in check_img_size() * Add list input support in detect.py * sys.path.append('./') to run from yolov5/ * Add int8 quantization support for TensorFlow 2.5 * Add get_coco128.sh * Remove --no-tfl-detect in models/tf.py (Use tf-android-tfl-detect branch for EdgeTPU) * Update requirements.txt * Replace torch.load() with attempt_load() * Update requirements.txt * Add --tf-raw-resize to set half_pixel_centers=False * Remove android directory * Update README.md * Update README.md * Add multiple OS support for EdgeTPU detection * Fix export and detect * Export 3 YOLO heads with Edge TPU models * Remove xywh denormalization with Edge TPU models in detect.py * Fix saved_model and pb detect error * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Fix pre-commit.ci failure * Add edgetpu in export.py docstring * Fix Edge TPU model detection exported by TF 2.7 * Add class names for TF/TFLite in DetectMultibackend * Fix assignment with nl in TFLite Detection * Add check when getting Edge TPU compiler version * Add UTF-8 encoding in opening --data file for Windows * Remove redundant TensorFlow import * Add Edge TPU in export.py's docstring * Add the detect layer in Edge TPU model conversion * Default `dnn=False` * Cleanup data.yaml loading * Update detect.py * Update val.py * Comments and generalize data.yaml names Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: unknown <fangjiacong@ut.cn> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2 years ago
4 years ago
4 years ago
4 years ago
Merge `develop` branch into `master` (#3518) * update ci-testing.yml (#3322) * update ci-testing.yml * update greetings.yml * bring back os matrix * update ci-testing.yml (#3322) * update ci-testing.yml * update greetings.yml * bring back os matrix * Enable direct `--weights URL` definition (#3373) * Enable direct `--weights URL` definition @KalenMike this PR will enable direct --weights URL definition. Example use case: ``` python train.py --weights https://storage.googleapis.com/bucket/dir/model.pt ``` * cleanup * bug fixes * weights = attempt_download(weights) * Update experimental.py * Update hubconf.py * return bug fix * comment mirror * min_bytes * Update tutorial.ipynb (#3368) add Open in Kaggle badge * `cv2.imread(img, -1)` for IMREAD_UNCHANGED (#3379) * Update datasets.py * comment Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * COCO evolution fix (#3388) * COCO evolution fix * cleanup * update print * print fix * Create `is_pip()` function (#3391) Returns `True` if file is part of pip package. Useful for contextual behavior modification. ```python def is_pip(): # Is file in a pip package? return 'site-packages' in Path(__file__).absolute().parts ``` * Revert "`cv2.imread(img, -1)` for IMREAD_UNCHANGED (#3379)" (#3395) This reverts commit 21a9607e00f1365b21d8c4bd81bdbf5fc0efea24. * Update FLOPs description (#3422) * Update README.md * Changing FLOPS to FLOPs. Co-authored-by: BuildTools <unconfigured@null.spigotmc.org> * Parse URL authentication (#3424) * Parse URL authentication * urllib.parse.unquote() * improved error handling * improved error handling * remove %3F * update check_file() * Add FLOPs title to table (#3453) * Suppress jit trace warning + graph once (#3454) * Suppress jit trace warning + graph once Suppress harmless jit trace warning on TensorBoard add_graph call. Also fix multiple add_graph() calls bug, now only on batch 0. * Update train.py * Update MixUp augmentation `alpha=beta=32.0` (#3455) Per VOC empirical results https://github.com/ultralytics/yolov5/issues/3380#issuecomment-853001307 by @developer0hye * Add `timeout()` class (#3460) * Add `timeout()` class * rearrange order * Faster HSV augmentation (#3462) remove datatype conversion process that can be skipped * Add `check_git_status()` 5 second timeout (#3464) * Add check_git_status() 5 second timeout This should prevent the SSH Git bug that we were discussing @KalenMike * cleanup * replace timeout with check_output built-in timeout * Improved `check_requirements()` offline-handling (#3466) Improve robustness of `check_requirements()` function to offline environments (do not attempt pip installs when offline). * Add `output_names` argument for ONNX export with dynamic axes (#3456) * Add output names & dynamic axes for onnx export Add output_names and dynamic_axes names for all outputs in torch.onnx.export. The first four outputs of the model will have names output0, output1, output2, output3 * use first output only + cleanup Co-authored-by: Samridha Shrestha <samridha.shrestha@g42.ai> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Revert FP16 `test.py` and `detect.py` inference to FP32 default (#3423) * fixed inference bug ,while use half precision * replace --use-half with --half * replace space and PEP8 in detect.py * PEP8 detect.py * update --half help comment * Update test.py * revert space Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Add additional links/resources to stale.yml message (#3467) * Update stale.yml * cleanup * Update stale.yml * reformat * Update stale.yml HUB URL (#3468) * Stale `github.actor` bug fix (#3483) * Explicit `model.eval()` call `if opt.train=False` (#3475) * call model.eval() when opt.train is False call model.eval() when opt.train is False * single-line if statement * cleanup Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * check_requirements() exclude `opencv-python` (#3495) Fix for 3rd party or contrib versions of installed OpenCV as in https://github.com/ultralytics/yolov5/issues/3494. * Earlier `assert` for cpu and half option (#3508) * early assert for cpu and half option early assert for cpu and half option * Modified comment Modified comment * Update tutorial.ipynb (#3510) * Reduce test.py results spacing (#3511) * Update README.md (#3512) * Update README.md Minor modifications * 850 width * Update greetings.yml revert greeting change as PRs will now merge to master. Co-authored-by: Piotr Skalski <SkalskiP@users.noreply.github.com> Co-authored-by: SkalskiP <piotr.skalski92@gmail.com> Co-authored-by: Peretz Cohen <pizzaz93@users.noreply.github.com> Co-authored-by: tudoulei <34886368+tudoulei@users.noreply.github.com> Co-authored-by: chocosaj <chocosaj@users.noreply.github.com> Co-authored-by: BuildTools <unconfigured@null.spigotmc.org> Co-authored-by: Yonghye Kwon <developer.0hye@gmail.com> Co-authored-by: Sam_S <SamSamhuns@users.noreply.github.com> Co-authored-by: Samridha Shrestha <samridha.shrestha@g42.ai> Co-authored-by: edificewang <609552430@qq.com>
3 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
Merge `develop` branch into `master` (#3518) * update ci-testing.yml (#3322) * update ci-testing.yml * update greetings.yml * bring back os matrix * update ci-testing.yml (#3322) * update ci-testing.yml * update greetings.yml * bring back os matrix * Enable direct `--weights URL` definition (#3373) * Enable direct `--weights URL` definition @KalenMike this PR will enable direct --weights URL definition. Example use case: ``` python train.py --weights https://storage.googleapis.com/bucket/dir/model.pt ``` * cleanup * bug fixes * weights = attempt_download(weights) * Update experimental.py * Update hubconf.py * return bug fix * comment mirror * min_bytes * Update tutorial.ipynb (#3368) add Open in Kaggle badge * `cv2.imread(img, -1)` for IMREAD_UNCHANGED (#3379) * Update datasets.py * comment Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * COCO evolution fix (#3388) * COCO evolution fix * cleanup * update print * print fix * Create `is_pip()` function (#3391) Returns `True` if file is part of pip package. Useful for contextual behavior modification. ```python def is_pip(): # Is file in a pip package? return 'site-packages' in Path(__file__).absolute().parts ``` * Revert "`cv2.imread(img, -1)` for IMREAD_UNCHANGED (#3379)" (#3395) This reverts commit 21a9607e00f1365b21d8c4bd81bdbf5fc0efea24. * Update FLOPs description (#3422) * Update README.md * Changing FLOPS to FLOPs. Co-authored-by: BuildTools <unconfigured@null.spigotmc.org> * Parse URL authentication (#3424) * Parse URL authentication * urllib.parse.unquote() * improved error handling * improved error handling * remove %3F * update check_file() * Add FLOPs title to table (#3453) * Suppress jit trace warning + graph once (#3454) * Suppress jit trace warning + graph once Suppress harmless jit trace warning on TensorBoard add_graph call. Also fix multiple add_graph() calls bug, now only on batch 0. * Update train.py * Update MixUp augmentation `alpha=beta=32.0` (#3455) Per VOC empirical results https://github.com/ultralytics/yolov5/issues/3380#issuecomment-853001307 by @developer0hye * Add `timeout()` class (#3460) * Add `timeout()` class * rearrange order * Faster HSV augmentation (#3462) remove datatype conversion process that can be skipped * Add `check_git_status()` 5 second timeout (#3464) * Add check_git_status() 5 second timeout This should prevent the SSH Git bug that we were discussing @KalenMike * cleanup * replace timeout with check_output built-in timeout * Improved `check_requirements()` offline-handling (#3466) Improve robustness of `check_requirements()` function to offline environments (do not attempt pip installs when offline). * Add `output_names` argument for ONNX export with dynamic axes (#3456) * Add output names & dynamic axes for onnx export Add output_names and dynamic_axes names for all outputs in torch.onnx.export. The first four outputs of the model will have names output0, output1, output2, output3 * use first output only + cleanup Co-authored-by: Samridha Shrestha <samridha.shrestha@g42.ai> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Revert FP16 `test.py` and `detect.py` inference to FP32 default (#3423) * fixed inference bug ,while use half precision * replace --use-half with --half * replace space and PEP8 in detect.py * PEP8 detect.py * update --half help comment * Update test.py * revert space Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Add additional links/resources to stale.yml message (#3467) * Update stale.yml * cleanup * Update stale.yml * reformat * Update stale.yml HUB URL (#3468) * Stale `github.actor` bug fix (#3483) * Explicit `model.eval()` call `if opt.train=False` (#3475) * call model.eval() when opt.train is False call model.eval() when opt.train is False * single-line if statement * cleanup Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * check_requirements() exclude `opencv-python` (#3495) Fix for 3rd party or contrib versions of installed OpenCV as in https://github.com/ultralytics/yolov5/issues/3494. * Earlier `assert` for cpu and half option (#3508) * early assert for cpu and half option early assert for cpu and half option * Modified comment Modified comment * Update tutorial.ipynb (#3510) * Reduce test.py results spacing (#3511) * Update README.md (#3512) * Update README.md Minor modifications * 850 width * Update greetings.yml revert greeting change as PRs will now merge to master. Co-authored-by: Piotr Skalski <SkalskiP@users.noreply.github.com> Co-authored-by: SkalskiP <piotr.skalski92@gmail.com> Co-authored-by: Peretz Cohen <pizzaz93@users.noreply.github.com> Co-authored-by: tudoulei <34886368+tudoulei@users.noreply.github.com> Co-authored-by: chocosaj <chocosaj@users.noreply.github.com> Co-authored-by: BuildTools <unconfigured@null.spigotmc.org> Co-authored-by: Yonghye Kwon <developer.0hye@gmail.com> Co-authored-by: Sam_S <SamSamhuns@users.noreply.github.com> Co-authored-by: Samridha Shrestha <samridha.shrestha@g42.ai> Co-authored-by: edificewang <609552430@qq.com>
3 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382
  1. # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
  2. """
  3. Validate a trained YOLOv5 model accuracy on a custom dataset
  4. Usage:
  5. $ python path/to/val.py --weights yolov5s.pt --data coco128.yaml --img 640
  6. Usage - formats:
  7. $ python path/to/val.py --weights yolov5s.pt # PyTorch
  8. yolov5s.torchscript # TorchScript
  9. yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn
  10. yolov5s.xml # OpenVINO
  11. yolov5s.engine # TensorRT
  12. yolov5s.mlmodel # CoreML (MacOS-only)
  13. yolov5s_saved_model # TensorFlow SavedModel
  14. yolov5s.pb # TensorFlow GraphDef
  15. yolov5s.tflite # TensorFlow Lite
  16. yolov5s_edgetpu.tflite # TensorFlow Edge TPU
  17. """
  18. import argparse
  19. import json
  20. import os
  21. import sys
  22. from pathlib import Path
  23. from threading import Thread
  24. import numpy as np
  25. import torch
  26. from tqdm import tqdm
  27. FILE = Path(__file__).resolve()
  28. ROOT = FILE.parents[0] # YOLOv5 root directory
  29. if str(ROOT) not in sys.path:
  30. sys.path.append(str(ROOT)) # add ROOT to PATH
  31. ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
  32. from models.common import DetectMultiBackend
  33. from utils.callbacks import Callbacks
  34. from utils.datasets import create_dataloader
  35. from utils.general import (LOGGER, box_iou, check_dataset, check_img_size, check_requirements, check_yaml,
  36. coco80_to_coco91_class, colorstr, increment_path, non_max_suppression, print_args,
  37. scale_coords, xywh2xyxy, xyxy2xywh)
  38. from utils.metrics import ConfusionMatrix, ap_per_class
  39. from utils.plots import output_to_target, plot_images, plot_val_study
  40. from utils.torch_utils import select_device, time_sync
  41. def save_one_txt(predn, save_conf, shape, file):
  42. # Save one txt result
  43. gn = torch.tensor(shape)[[1, 0, 1, 0]] # normalization gain whwh
  44. for *xyxy, conf, cls in predn.tolist():
  45. xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
  46. line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
  47. with open(file, 'a') as f:
  48. f.write(('%g ' * len(line)).rstrip() % line + '\n')
  49. def save_one_json(predn, jdict, path, class_map):
  50. # Save one JSON result {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}
  51. image_id = int(path.stem) if path.stem.isnumeric() else path.stem
  52. box = xyxy2xywh(predn[:, :4]) # xywh
  53. box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
  54. for p, b in zip(predn.tolist(), box.tolist()):
  55. jdict.append({'image_id': image_id,
  56. 'category_id': class_map[int(p[5])],
  57. 'bbox': [round(x, 3) for x in b],
  58. 'score': round(p[4], 5)})
  59. def process_batch(detections, labels, iouv):
  60. """
  61. Return correct predictions matrix. Both sets of boxes are in (x1, y1, x2, y2) format.
  62. Arguments:
  63. detections (Array[N, 6]), x1, y1, x2, y2, conf, class
  64. labels (Array[M, 5]), class, x1, y1, x2, y2
  65. Returns:
  66. correct (Array[N, 10]), for 10 IoU levels
  67. """
  68. correct = torch.zeros(detections.shape[0], iouv.shape[0], dtype=torch.bool, device=iouv.device)
  69. iou = box_iou(labels[:, 1:], detections[:, :4])
  70. x = torch.where((iou >= iouv[0]) & (labels[:, 0:1] == detections[:, 5])) # IoU above threshold and classes match
  71. if x[0].shape[0]:
  72. matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy() # [label, detection, iou]
  73. if x[0].shape[0] > 1:
  74. matches = matches[matches[:, 2].argsort()[::-1]]
  75. matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
  76. # matches = matches[matches[:, 2].argsort()[::-1]]
  77. matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
  78. matches = torch.Tensor(matches).to(iouv.device)
  79. correct[matches[:, 1].long()] = matches[:, 2:3] >= iouv
  80. return correct
  81. @torch.no_grad()
  82. def run(data,
  83. weights=None, # model.pt path(s)
  84. batch_size=32, # batch size
  85. imgsz=640, # inference size (pixels)
  86. conf_thres=0.001, # confidence threshold
  87. iou_thres=0.6, # NMS IoU threshold
  88. task='val', # train, val, test, speed or study
  89. device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
  90. workers=8, # max dataloader workers (per RANK in DDP mode)
  91. single_cls=False, # treat as single-class dataset
  92. augment=False, # augmented inference
  93. verbose=False, # verbose output
  94. save_txt=False, # save results to *.txt
  95. save_hybrid=False, # save label+prediction hybrid results to *.txt
  96. save_conf=False, # save confidences in --save-txt labels
  97. save_json=False, # save a COCO-JSON results file
  98. project=ROOT / 'runs/val', # save to project/name
  99. name='exp', # save to project/name
  100. exist_ok=False, # existing project/name ok, do not increment
  101. half=True, # use FP16 half-precision inference
  102. dnn=False, # use OpenCV DNN for ONNX inference
  103. model=None,
  104. dataloader=None,
  105. save_dir=Path(''),
  106. plots=True,
  107. callbacks=Callbacks(),
  108. compute_loss=None,
  109. ):
  110. # Initialize/load model and set device
  111. training = model is not None
  112. if training: # called by train.py
  113. device, pt, jit, engine = next(model.parameters()).device, True, False, False # get model device, PyTorch model
  114. half &= device.type != 'cpu' # half precision only supported on CUDA
  115. model.half() if half else model.float()
  116. else: # called directly
  117. device = select_device(device, batch_size=batch_size)
  118. # Directories
  119. save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
  120. (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
  121. # Load model
  122. model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data)
  123. stride, pt, jit, onnx, engine = model.stride, model.pt, model.jit, model.onnx, model.engine
  124. imgsz = check_img_size(imgsz, s=stride) # check image size
  125. half &= (pt or jit or onnx or engine) and device.type != 'cpu' # FP16 supported on limited backends with CUDA
  126. if pt or jit:
  127. model.model.half() if half else model.model.float()
  128. elif engine:
  129. batch_size = model.batch_size
  130. else:
  131. half = False
  132. batch_size = 1 # export.py models default to batch-size 1
  133. device = torch.device('cpu')
  134. LOGGER.info(f'Forcing --batch-size 1 square inference shape(1,3,{imgsz},{imgsz}) for non-PyTorch backends')
  135. # Data
  136. data = check_dataset(data) # check
  137. # Configure
  138. model.eval()
  139. is_coco = isinstance(data.get('val'), str) and data['val'].endswith('coco/val2017.txt') # COCO dataset
  140. nc = 1 if single_cls else int(data['nc']) # number of classes
  141. iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for mAP@0.5:0.95
  142. niou = iouv.numel()
  143. # Dataloader
  144. if not training:
  145. model.warmup(imgsz=(1 if pt else batch_size, 3, imgsz, imgsz), half=half) # warmup
  146. pad = 0.0 if task == 'speed' else 0.5
  147. task = task if task in ('train', 'val', 'test') else 'val' # path to train/val/test images
  148. dataloader = create_dataloader(data[task], imgsz, batch_size, stride, single_cls, pad=pad, rect=pt,
  149. workers=workers, prefix=colorstr(f'{task}: '))[0]
  150. seen = 0
  151. confusion_matrix = ConfusionMatrix(nc=nc)
  152. names = {k: v for k, v in enumerate(model.names if hasattr(model, 'names') else model.module.names)}
  153. class_map = coco80_to_coco91_class() if is_coco else list(range(1000))
  154. s = ('%20s' + '%11s' * 6) % ('Class', 'Images', 'Labels', 'P', 'R', 'mAP@.5', 'mAP@.5:.95')
  155. dt, p, r, f1, mp, mr, map50, map = [0.0, 0.0, 0.0], 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
  156. loss = torch.zeros(3, device=device)
  157. jdict, stats, ap, ap_class = [], [], [], []
  158. pbar = tqdm(dataloader, desc=s, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}') # progress bar
  159. for batch_i, (im, targets, paths, shapes) in enumerate(pbar):
  160. t1 = time_sync()
  161. if pt or jit or engine:
  162. im = im.to(device, non_blocking=True)
  163. targets = targets.to(device)
  164. im = im.half() if half else im.float() # uint8 to fp16/32
  165. im /= 255 # 0 - 255 to 0.0 - 1.0
  166. nb, _, height, width = im.shape # batch size, channels, height, width
  167. t2 = time_sync()
  168. dt[0] += t2 - t1
  169. # Inference
  170. out, train_out = model(im) if training else model(im, augment=augment, val=True) # inference, loss outputs
  171. dt[1] += time_sync() - t2
  172. # Loss
  173. if compute_loss:
  174. loss += compute_loss([x.float() for x in train_out], targets)[1] # box, obj, cls
  175. # NMS
  176. targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(device) # to pixels
  177. lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling
  178. t3 = time_sync()
  179. out = non_max_suppression(out, conf_thres, iou_thres, labels=lb, multi_label=True, agnostic=single_cls)
  180. dt[2] += time_sync() - t3
  181. # Metrics
  182. for si, pred in enumerate(out):
  183. labels = targets[targets[:, 0] == si, 1:]
  184. nl = len(labels)
  185. tcls = labels[:, 0].tolist() if nl else [] # target class
  186. path, shape = Path(paths[si]), shapes[si][0]
  187. seen += 1
  188. if len(pred) == 0:
  189. if nl:
  190. stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls))
  191. continue
  192. # Predictions
  193. if single_cls:
  194. pred[:, 5] = 0
  195. predn = pred.clone()
  196. scale_coords(im[si].shape[1:], predn[:, :4], shape, shapes[si][1]) # native-space pred
  197. # Evaluate
  198. if nl:
  199. tbox = xywh2xyxy(labels[:, 1:5]) # target boxes
  200. scale_coords(im[si].shape[1:], tbox, shape, shapes[si][1]) # native-space labels
  201. labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels
  202. correct = process_batch(predn, labelsn, iouv)
  203. if plots:
  204. confusion_matrix.process_batch(predn, labelsn)
  205. else:
  206. correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool)
  207. stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls)) # (correct, conf, pcls, tcls)
  208. # Save/log
  209. if save_txt:
  210. save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / (path.stem + '.txt'))
  211. if save_json:
  212. save_one_json(predn, jdict, path, class_map) # append to COCO-JSON dictionary
  213. callbacks.run('on_val_image_end', pred, predn, path, names, im[si])
  214. # Plot images
  215. if plots and batch_i < 3:
  216. f = save_dir / f'val_batch{batch_i}_labels.jpg' # labels
  217. Thread(target=plot_images, args=(im, targets, paths, f, names), daemon=True).start()
  218. f = save_dir / f'val_batch{batch_i}_pred.jpg' # predictions
  219. Thread(target=plot_images, args=(im, output_to_target(out), paths, f, names), daemon=True).start()
  220. # Compute metrics
  221. stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy
  222. if len(stats) and stats[0].any():
  223. tp, fp, p, r, f1, ap, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names)
  224. ap50, ap = ap[:, 0], ap.mean(1) # AP@0.5, AP@0.5:0.95
  225. mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
  226. nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class
  227. else:
  228. nt = torch.zeros(1)
  229. # Print results
  230. pf = '%20s' + '%11i' * 2 + '%11.3g' * 4 # print format
  231. LOGGER.info(pf % ('all', seen, nt.sum(), mp, mr, map50, map))
  232. # Print results per class
  233. if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
  234. for i, c in enumerate(ap_class):
  235. LOGGER.info(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
  236. # Print speeds
  237. t = tuple(x / seen * 1E3 for x in dt) # speeds per image
  238. if not training:
  239. shape = (batch_size, 3, imgsz, imgsz)
  240. LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}' % t)
  241. # Plots
  242. if plots:
  243. confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
  244. callbacks.run('on_val_end')
  245. # Save JSON
  246. if save_json and len(jdict):
  247. w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights
  248. anno_json = str(Path(data.get('path', '../coco')) / 'annotations/instances_val2017.json') # annotations json
  249. pred_json = str(save_dir / f"{w}_predictions.json") # predictions json
  250. LOGGER.info(f'\nEvaluating pycocotools mAP... saving {pred_json}...')
  251. with open(pred_json, 'w') as f:
  252. json.dump(jdict, f)
  253. try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
  254. check_requirements(['pycocotools'])
  255. from pycocotools.coco import COCO
  256. from pycocotools.cocoeval import COCOeval
  257. anno = COCO(anno_json) # init annotations api
  258. pred = anno.loadRes(pred_json) # init predictions api
  259. eval = COCOeval(anno, pred, 'bbox')
  260. if is_coco:
  261. eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.img_files] # image IDs to evaluate
  262. eval.evaluate()
  263. eval.accumulate()
  264. eval.summarize()
  265. map, map50 = eval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5)
  266. except Exception as e:
  267. LOGGER.info(f'pycocotools unable to run: {e}')
  268. # Return results
  269. model.float() # for training
  270. if not training:
  271. s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
  272. LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
  273. maps = np.zeros(nc) + map
  274. for i, c in enumerate(ap_class):
  275. maps[c] = ap[i]
  276. return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
  277. def parse_opt():
  278. parser = argparse.ArgumentParser()
  279. parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
  280. parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model.pt path(s)')
  281. parser.add_argument('--batch-size', type=int, default=32, help='batch size')
  282. parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)')
  283. parser.add_argument('--conf-thres', type=float, default=0.001, help='confidence threshold')
  284. parser.add_argument('--iou-thres', type=float, default=0.6, help='NMS IoU threshold')
  285. parser.add_argument('--task', default='val', help='train, val, test, speed or study')
  286. parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
  287. parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
  288. parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
  289. parser.add_argument('--augment', action='store_true', help='augmented inference')
  290. parser.add_argument('--verbose', action='store_true', help='report mAP by class')
  291. parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
  292. parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt')
  293. parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
  294. parser.add_argument('--save-json', action='store_true', help='save a COCO-JSON results file')
  295. parser.add_argument('--project', default=ROOT / 'runs/val', help='save to project/name')
  296. parser.add_argument('--name', default='exp', help='save to project/name')
  297. parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
  298. parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
  299. parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
  300. opt = parser.parse_args()
  301. opt.data = check_yaml(opt.data) # check YAML
  302. opt.save_json |= opt.data.endswith('coco.yaml')
  303. opt.save_txt |= opt.save_hybrid
  304. print_args(FILE.stem, opt)
  305. return opt
  306. def main(opt):
  307. check_requirements(requirements=ROOT / 'requirements.txt', exclude=('tensorboard', 'thop'))
  308. if opt.task in ('train', 'val', 'test'): # run normally
  309. if opt.conf_thres > 0.001: # https://github.com/ultralytics/yolov5/issues/1466
  310. LOGGER.info(f'WARNING: confidence threshold {opt.conf_thres} >> 0.001 will produce invalid mAP values.')
  311. run(**vars(opt))
  312. else:
  313. weights = opt.weights if isinstance(opt.weights, list) else [opt.weights]
  314. opt.half = True # FP16 for fastest results
  315. if opt.task == 'speed': # speed benchmarks
  316. # python val.py --task speed --data coco.yaml --batch 1 --weights yolov5n.pt yolov5s.pt...
  317. opt.conf_thres, opt.iou_thres, opt.save_json = 0.25, 0.45, False
  318. for opt.weights in weights:
  319. run(**vars(opt), plots=False)
  320. elif opt.task == 'study': # speed vs mAP benchmarks
  321. # python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n.pt yolov5s.pt...
  322. for opt.weights in weights:
  323. f = f'study_{Path(opt.data).stem}_{Path(opt.weights).stem}.txt' # filename to save to
  324. x, y = list(range(256, 1536 + 128, 128)), [] # x axis (image sizes), y axis
  325. for opt.imgsz in x: # img-size
  326. LOGGER.info(f'\nRunning {f} --imgsz {opt.imgsz}...')
  327. r, _, t = run(**vars(opt), plots=False)
  328. y.append(r + t) # results and times
  329. np.savetxt(f, y, fmt='%10.4g') # save
  330. os.system('zip -r study.zip study_*.txt')
  331. plot_val_study(x=x) # plot
  332. if __name__ == "__main__":
  333. opt = parse_opt()
  334. main(opt)