You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

test.py 17KB

4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
Improved W&B integration (#2125) * Init Commit * new wandb integration * Update * Use data_dict in test * Updates * Update: scope of log_img * Update: scope of log_img * Update * Update: Fix logging conditions * Add tqdm bar, support for .txt dataset format * Improve Result table Logger * Init Commit * new wandb integration * Update * Use data_dict in test * Updates * Update: scope of log_img * Update: scope of log_img * Update * Update: Fix logging conditions * Add tqdm bar, support for .txt dataset format * Improve Result table Logger * Add dataset creation in training script * Change scope: self.wandb_run * Add wandb-artifact:// natively you can now use --resume with wandb run links * Add suuport for logging dataset while training * Cleanup * Fix: Merge conflict * Fix: CI tests * Automatically use wandb config * Fix: Resume * Fix: CI * Enhance: Using val_table * More resume enhancement * FIX : CI * Add alias * Get useful opt config data * train.py cleanup * Cleanup train.py * more cleanup * Cleanup| CI fix * Reformat using PEP8 * FIX:CI * rebase * remove uneccesary changes * remove uneccesary changes * remove uneccesary changes * remove unecessary chage from test.py * FIX: resume from local checkpoint * FIX:resume * FIX:resume * Reformat * Performance improvement * Fix local resume * Fix local resume * FIX:CI * Fix: CI * Imporve image logging * (:(:Redo CI tests:):) * Remember epochs when resuming * Remember epochs when resuming * Update DDP location Potential fix for #2405 * PEP8 reformat * 0.25 confidence threshold * reset train.py plots syntax to previous * reset epochs completed syntax to previous * reset space to previous * remove brackets * reset comment to previous * Update: is_coco check, remove unused code * Remove redundant print statement * Remove wandb imports * remove dsviz logger from test.py * Remove redundant change from test.py * remove redundant changes from train.py * reformat and improvements * Fix typo * Add tqdm tqdm progress when scanning files, naming improvements Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
3 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
Improved W&B integration (#2125) * Init Commit * new wandb integration * Update * Use data_dict in test * Updates * Update: scope of log_img * Update: scope of log_img * Update * Update: Fix logging conditions * Add tqdm bar, support for .txt dataset format * Improve Result table Logger * Init Commit * new wandb integration * Update * Use data_dict in test * Updates * Update: scope of log_img * Update: scope of log_img * Update * Update: Fix logging conditions * Add tqdm bar, support for .txt dataset format * Improve Result table Logger * Add dataset creation in training script * Change scope: self.wandb_run * Add wandb-artifact:// natively you can now use --resume with wandb run links * Add suuport for logging dataset while training * Cleanup * Fix: Merge conflict * Fix: CI tests * Automatically use wandb config * Fix: Resume * Fix: CI * Enhance: Using val_table * More resume enhancement * FIX : CI * Add alias * Get useful opt config data * train.py cleanup * Cleanup train.py * more cleanup * Cleanup| CI fix * Reformat using PEP8 * FIX:CI * rebase * remove uneccesary changes * remove uneccesary changes * remove uneccesary changes * remove unecessary chage from test.py * FIX: resume from local checkpoint * FIX:resume * FIX:resume * Reformat * Performance improvement * Fix local resume * Fix local resume * FIX:CI * Fix: CI * Imporve image logging * (:(:Redo CI tests:):) * Remember epochs when resuming * Remember epochs when resuming * Update DDP location Potential fix for #2405 * PEP8 reformat * 0.25 confidence threshold * reset train.py plots syntax to previous * reset epochs completed syntax to previous * reset space to previous * remove brackets * reset comment to previous * Update: is_coco check, remove unused code * Remove redundant print statement * Remove wandb imports * remove dsviz logger from test.py * Remove redundant change from test.py * remove redundant changes from train.py * reformat and improvements * Fix typo * Add tqdm tqdm progress when scanning files, naming improvements Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
3 years ago
4 years ago
Improved W&B integration (#2125) * Init Commit * new wandb integration * Update * Use data_dict in test * Updates * Update: scope of log_img * Update: scope of log_img * Update * Update: Fix logging conditions * Add tqdm bar, support for .txt dataset format * Improve Result table Logger * Init Commit * new wandb integration * Update * Use data_dict in test * Updates * Update: scope of log_img * Update: scope of log_img * Update * Update: Fix logging conditions * Add tqdm bar, support for .txt dataset format * Improve Result table Logger * Add dataset creation in training script * Change scope: self.wandb_run * Add wandb-artifact:// natively you can now use --resume with wandb run links * Add suuport for logging dataset while training * Cleanup * Fix: Merge conflict * Fix: CI tests * Automatically use wandb config * Fix: Resume * Fix: CI * Enhance: Using val_table * More resume enhancement * FIX : CI * Add alias * Get useful opt config data * train.py cleanup * Cleanup train.py * more cleanup * Cleanup| CI fix * Reformat using PEP8 * FIX:CI * rebase * remove uneccesary changes * remove uneccesary changes * remove uneccesary changes * remove unecessary chage from test.py * FIX: resume from local checkpoint * FIX:resume * FIX:resume * Reformat * Performance improvement * Fix local resume * Fix local resume * FIX:CI * Fix: CI * Imporve image logging * (:(:Redo CI tests:):) * Remember epochs when resuming * Remember epochs when resuming * Update DDP location Potential fix for #2405 * PEP8 reformat * 0.25 confidence threshold * reset train.py plots syntax to previous * reset epochs completed syntax to previous * reset space to previous * remove brackets * reset comment to previous * Update: is_coco check, remove unused code * Remove redundant print statement * Remove wandb imports * remove dsviz logger from test.py * Remove redundant change from test.py * remove redundant changes from train.py * reformat and improvements * Fix typo * Add tqdm tqdm progress when scanning files, naming improvements Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
3 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
Improved W&B integration (#2125) * Init Commit * new wandb integration * Update * Use data_dict in test * Updates * Update: scope of log_img * Update: scope of log_img * Update * Update: Fix logging conditions * Add tqdm bar, support for .txt dataset format * Improve Result table Logger * Init Commit * new wandb integration * Update * Use data_dict in test * Updates * Update: scope of log_img * Update: scope of log_img * Update * Update: Fix logging conditions * Add tqdm bar, support for .txt dataset format * Improve Result table Logger * Add dataset creation in training script * Change scope: self.wandb_run * Add wandb-artifact:// natively you can now use --resume with wandb run links * Add suuport for logging dataset while training * Cleanup * Fix: Merge conflict * Fix: CI tests * Automatically use wandb config * Fix: Resume * Fix: CI * Enhance: Using val_table * More resume enhancement * FIX : CI * Add alias * Get useful opt config data * train.py cleanup * Cleanup train.py * more cleanup * Cleanup| CI fix * Reformat using PEP8 * FIX:CI * rebase * remove uneccesary changes * remove uneccesary changes * remove uneccesary changes * remove unecessary chage from test.py * FIX: resume from local checkpoint * FIX:resume * FIX:resume * Reformat * Performance improvement * Fix local resume * Fix local resume * FIX:CI * Fix: CI * Imporve image logging * (:(:Redo CI tests:):) * Remember epochs when resuming * Remember epochs when resuming * Update DDP location Potential fix for #2405 * PEP8 reformat * 0.25 confidence threshold * reset train.py plots syntax to previous * reset epochs completed syntax to previous * reset space to previous * remove brackets * reset comment to previous * Update: is_coco check, remove unused code * Remove redundant print statement * Remove wandb imports * remove dsviz logger from test.py * Remove redundant change from test.py * remove redundant changes from train.py * reformat and improvements * Fix typo * Add tqdm tqdm progress when scanning files, naming improvements Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
3 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
Improved W&B integration (#2125) * Init Commit * new wandb integration * Update * Use data_dict in test * Updates * Update: scope of log_img * Update: scope of log_img * Update * Update: Fix logging conditions * Add tqdm bar, support for .txt dataset format * Improve Result table Logger * Init Commit * new wandb integration * Update * Use data_dict in test * Updates * Update: scope of log_img * Update: scope of log_img * Update * Update: Fix logging conditions * Add tqdm bar, support for .txt dataset format * Improve Result table Logger * Add dataset creation in training script * Change scope: self.wandb_run * Add wandb-artifact:// natively you can now use --resume with wandb run links * Add suuport for logging dataset while training * Cleanup * Fix: Merge conflict * Fix: CI tests * Automatically use wandb config * Fix: Resume * Fix: CI * Enhance: Using val_table * More resume enhancement * FIX : CI * Add alias * Get useful opt config data * train.py cleanup * Cleanup train.py * more cleanup * Cleanup| CI fix * Reformat using PEP8 * FIX:CI * rebase * remove uneccesary changes * remove uneccesary changes * remove uneccesary changes * remove unecessary chage from test.py * FIX: resume from local checkpoint * FIX:resume * FIX:resume * Reformat * Performance improvement * Fix local resume * Fix local resume * FIX:CI * Fix: CI * Imporve image logging * (:(:Redo CI tests:):) * Remember epochs when resuming * Remember epochs when resuming * Update DDP location Potential fix for #2405 * PEP8 reformat * 0.25 confidence threshold * reset train.py plots syntax to previous * reset epochs completed syntax to previous * reset space to previous * remove brackets * reset comment to previous * Update: is_coco check, remove unused code * Remove redundant print statement * Remove wandb imports * remove dsviz logger from test.py * Remove redundant change from test.py * remove redundant changes from train.py * reformat and improvements * Fix typo * Add tqdm tqdm progress when scanning files, naming improvements Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
3 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347
  1. import argparse
  2. import json
  3. import os
  4. from pathlib import Path
  5. from threading import Thread
  6. import numpy as np
  7. import torch
  8. import yaml
  9. from tqdm import tqdm
  10. from models.experimental import attempt_load
  11. from utils.datasets import create_dataloader
  12. from utils.general import coco80_to_coco91_class, check_dataset, check_file, check_img_size, check_requirements, \
  13. box_iou, non_max_suppression, scale_coords, xyxy2xywh, xywh2xyxy, set_logging, increment_path, colorstr
  14. from utils.metrics import ap_per_class, ConfusionMatrix
  15. from utils.plots import plot_images, output_to_target, plot_study_txt
  16. from utils.torch_utils import select_device, time_synchronized
  17. def test(data,
  18. weights=None,
  19. batch_size=32,
  20. imgsz=640,
  21. conf_thres=0.001,
  22. iou_thres=0.6, # for NMS
  23. save_json=False,
  24. single_cls=False,
  25. augment=False,
  26. verbose=False,
  27. model=None,
  28. dataloader=None,
  29. save_dir=Path(''), # for saving images
  30. save_txt=False, # for auto-labelling
  31. save_hybrid=False, # for hybrid auto-labelling
  32. save_conf=False, # save auto-label confidences
  33. plots=True,
  34. wandb_logger=None,
  35. compute_loss=None,
  36. half_precision=True,
  37. is_coco=False,
  38. opt=None):
  39. # Initialize/load model and set device
  40. training = model is not None
  41. if training: # called by train.py
  42. device = next(model.parameters()).device # get model device
  43. else: # called directly
  44. set_logging()
  45. device = select_device(opt.device, batch_size=batch_size)
  46. # Directories
  47. save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok) # increment run
  48. (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
  49. # Load model
  50. model = attempt_load(weights, map_location=device) # load FP32 model
  51. gs = max(int(model.stride.max()), 32) # grid size (max stride)
  52. imgsz = check_img_size(imgsz, s=gs) # check img_size
  53. # Multi-GPU disabled, incompatible with .half() https://github.com/ultralytics/yolov5/issues/99
  54. # if device.type != 'cpu' and torch.cuda.device_count() > 1:
  55. # model = nn.DataParallel(model)
  56. # Half
  57. half = device.type != 'cpu' and half_precision # half precision only supported on CUDA
  58. if half:
  59. model.half()
  60. # Configure
  61. model.eval()
  62. if isinstance(data, str):
  63. is_coco = data.endswith('coco.yaml')
  64. with open(data) as f:
  65. data = yaml.safe_load(f)
  66. check_dataset(data) # check
  67. nc = 1 if single_cls else int(data['nc']) # number of classes
  68. iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for mAP@0.5:0.95
  69. niou = iouv.numel()
  70. # Logging
  71. log_imgs = 0
  72. if wandb_logger and wandb_logger.wandb:
  73. log_imgs = min(wandb_logger.log_imgs, 100)
  74. # Dataloader
  75. if not training:
  76. if device.type != 'cpu':
  77. model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
  78. task = opt.task if opt.task in ('train', 'val', 'test') else 'val' # path to train/val/test images
  79. dataloader = create_dataloader(data[task], imgsz, batch_size, gs, opt, pad=0.5, rect=True,
  80. prefix=colorstr(f'{task}: '))[0]
  81. seen = 0
  82. confusion_matrix = ConfusionMatrix(nc=nc)
  83. names = {k: v for k, v in enumerate(model.names if hasattr(model, 'names') else model.module.names)}
  84. coco91class = coco80_to_coco91_class()
  85. s = ('%20s' + '%12s' * 6) % ('Class', 'Images', 'Labels', 'P', 'R', 'mAP@.5', 'mAP@.5:.95')
  86. p, r, f1, mp, mr, map50, map, t0, t1 = 0., 0., 0., 0., 0., 0., 0., 0., 0.
  87. loss = torch.zeros(3, device=device)
  88. jdict, stats, ap, ap_class, wandb_images = [], [], [], [], []
  89. for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)):
  90. img = img.to(device, non_blocking=True)
  91. img = img.half() if half else img.float() # uint8 to fp16/32
  92. img /= 255.0 # 0 - 255 to 0.0 - 1.0
  93. targets = targets.to(device)
  94. nb, _, height, width = img.shape # batch size, channels, height, width
  95. with torch.no_grad():
  96. # Run model
  97. t = time_synchronized()
  98. out, train_out = model(img, augment=augment) # inference and training outputs
  99. t0 += time_synchronized() - t
  100. # Compute loss
  101. if compute_loss:
  102. loss += compute_loss([x.float() for x in train_out], targets)[1][:3] # box, obj, cls
  103. # Run NMS
  104. targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(device) # to pixels
  105. lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling
  106. t = time_synchronized()
  107. out = non_max_suppression(out, conf_thres=conf_thres, iou_thres=iou_thres, labels=lb, multi_label=True)
  108. t1 += time_synchronized() - t
  109. # Statistics per image
  110. for si, pred in enumerate(out):
  111. labels = targets[targets[:, 0] == si, 1:]
  112. nl = len(labels)
  113. tcls = labels[:, 0].tolist() if nl else [] # target class
  114. path = Path(paths[si])
  115. seen += 1
  116. if len(pred) == 0:
  117. if nl:
  118. stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls))
  119. continue
  120. # Predictions
  121. predn = pred.clone()
  122. scale_coords(img[si].shape[1:], predn[:, :4], shapes[si][0], shapes[si][1]) # native-space pred
  123. # Append to text file
  124. if save_txt:
  125. gn = torch.tensor(shapes[si][0])[[1, 0, 1, 0]] # normalization gain whwh
  126. for *xyxy, conf, cls in predn.tolist():
  127. xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
  128. line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
  129. with open(save_dir / 'labels' / (path.stem + '.txt'), 'a') as f:
  130. f.write(('%g ' * len(line)).rstrip() % line + '\n')
  131. # W&B logging - Media Panel Plots
  132. if len(wandb_images) < log_imgs and wandb_logger.current_epoch > 0: # Check for test operation
  133. if wandb_logger.current_epoch % wandb_logger.bbox_interval == 0:
  134. box_data = [{"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]},
  135. "class_id": int(cls),
  136. "box_caption": "%s %.3f" % (names[cls], conf),
  137. "scores": {"class_score": conf},
  138. "domain": "pixel"} for *xyxy, conf, cls in pred.tolist()]
  139. boxes = {"predictions": {"box_data": box_data, "class_labels": names}} # inference-space
  140. wandb_images.append(wandb_logger.wandb.Image(img[si], boxes=boxes, caption=path.name))
  141. wandb_logger.log_training_progress(predn, path, names) if wandb_logger and wandb_logger.wandb_run else None
  142. # Append to pycocotools JSON dictionary
  143. if save_json:
  144. # [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
  145. image_id = int(path.stem) if path.stem.isnumeric() else path.stem
  146. box = xyxy2xywh(predn[:, :4]) # xywh
  147. box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
  148. for p, b in zip(pred.tolist(), box.tolist()):
  149. jdict.append({'image_id': image_id,
  150. 'category_id': coco91class[int(p[5])] if is_coco else int(p[5]),
  151. 'bbox': [round(x, 3) for x in b],
  152. 'score': round(p[4], 5)})
  153. # Assign all predictions as incorrect
  154. correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool, device=device)
  155. if nl:
  156. detected = [] # target indices
  157. tcls_tensor = labels[:, 0]
  158. # target boxes
  159. tbox = xywh2xyxy(labels[:, 1:5])
  160. scale_coords(img[si].shape[1:], tbox, shapes[si][0], shapes[si][1]) # native-space labels
  161. if plots:
  162. confusion_matrix.process_batch(predn, torch.cat((labels[:, 0:1], tbox), 1))
  163. # Per target class
  164. for cls in torch.unique(tcls_tensor):
  165. ti = (cls == tcls_tensor).nonzero(as_tuple=False).view(-1) # prediction indices
  166. pi = (cls == pred[:, 5]).nonzero(as_tuple=False).view(-1) # target indices
  167. # Search for detections
  168. if pi.shape[0]:
  169. # Prediction to target ious
  170. ious, i = box_iou(predn[pi, :4], tbox[ti]).max(1) # best ious, indices
  171. # Append detections
  172. detected_set = set()
  173. for j in (ious > iouv[0]).nonzero(as_tuple=False):
  174. d = ti[i[j]] # detected target
  175. if d.item() not in detected_set:
  176. detected_set.add(d.item())
  177. detected.append(d)
  178. correct[pi[j]] = ious[j] > iouv # iou_thres is 1xn
  179. if len(detected) == nl: # all targets already located in image
  180. break
  181. # Append statistics (correct, conf, pcls, tcls)
  182. stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))
  183. # Plot images
  184. if plots and batch_i < 3:
  185. f = save_dir / f'test_batch{batch_i}_labels.jpg' # labels
  186. Thread(target=plot_images, args=(img, targets, paths, f, names), daemon=True).start()
  187. f = save_dir / f'test_batch{batch_i}_pred.jpg' # predictions
  188. Thread(target=plot_images, args=(img, output_to_target(out), paths, f, names), daemon=True).start()
  189. # Compute statistics
  190. stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy
  191. if len(stats) and stats[0].any():
  192. p, r, ap, f1, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names)
  193. ap50, ap = ap[:, 0], ap.mean(1) # AP@0.5, AP@0.5:0.95
  194. mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
  195. nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class
  196. else:
  197. nt = torch.zeros(1)
  198. # Print results
  199. pf = '%20s' + '%12i' * 2 + '%12.3g' * 4 # print format
  200. print(pf % ('all', seen, nt.sum(), mp, mr, map50, map))
  201. # Print results per class
  202. if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
  203. for i, c in enumerate(ap_class):
  204. print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
  205. # Print speeds
  206. t = tuple(x / seen * 1E3 for x in (t0, t1, t0 + t1)) + (imgsz, imgsz, batch_size) # tuple
  207. if not training:
  208. print('Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g' % t)
  209. # Plots
  210. if plots:
  211. confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
  212. if wandb_logger and wandb_logger.wandb:
  213. val_batches = [wandb_logger.wandb.Image(str(f), caption=f.name) for f in sorted(save_dir.glob('test*.jpg'))]
  214. wandb_logger.log({"Validation": val_batches})
  215. if wandb_images:
  216. wandb_logger.log({"Bounding Box Debugger/Images": wandb_images})
  217. # Save JSON
  218. if save_json and len(jdict):
  219. w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights
  220. anno_json = '../coco/annotations/instances_val2017.json' # annotations json
  221. pred_json = str(save_dir / f"{w}_predictions.json") # predictions json
  222. print('\nEvaluating pycocotools mAP... saving %s...' % pred_json)
  223. with open(pred_json, 'w') as f:
  224. json.dump(jdict, f)
  225. try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
  226. from pycocotools.coco import COCO
  227. from pycocotools.cocoeval import COCOeval
  228. anno = COCO(anno_json) # init annotations api
  229. pred = anno.loadRes(pred_json) # init predictions api
  230. eval = COCOeval(anno, pred, 'bbox')
  231. if is_coco:
  232. eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.img_files] # image IDs to evaluate
  233. eval.evaluate()
  234. eval.accumulate()
  235. eval.summarize()
  236. map, map50 = eval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5)
  237. except Exception as e:
  238. print(f'pycocotools unable to run: {e}')
  239. # Return results
  240. model.float() # for training
  241. if not training:
  242. s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
  243. print(f"Results saved to {save_dir}{s}")
  244. maps = np.zeros(nc) + map
  245. for i, c in enumerate(ap_class):
  246. maps[c] = ap[i]
  247. return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
  248. if __name__ == '__main__':
  249. parser = argparse.ArgumentParser(prog='test.py')
  250. parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)')
  251. parser.add_argument('--data', type=str, default='data/coco128.yaml', help='*.data path')
  252. parser.add_argument('--batch-size', type=int, default=32, help='size of each image batch')
  253. parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
  254. parser.add_argument('--conf-thres', type=float, default=0.001, help='object confidence threshold')
  255. parser.add_argument('--iou-thres', type=float, default=0.6, help='IOU threshold for NMS')
  256. parser.add_argument('--task', default='val', help='train, val, test, speed or study')
  257. parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
  258. parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
  259. parser.add_argument('--augment', action='store_true', help='augmented inference')
  260. parser.add_argument('--verbose', action='store_true', help='report mAP by class')
  261. parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
  262. parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt')
  263. parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
  264. parser.add_argument('--save-json', action='store_true', help='save a cocoapi-compatible JSON results file')
  265. parser.add_argument('--project', default='runs/test', help='save to project/name')
  266. parser.add_argument('--name', default='exp', help='save to project/name')
  267. parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
  268. opt = parser.parse_args()
  269. opt.save_json |= opt.data.endswith('coco.yaml')
  270. opt.data = check_file(opt.data) # check file
  271. print(opt)
  272. check_requirements()
  273. if opt.task in ('train', 'val', 'test'): # run normally
  274. test(opt.data,
  275. opt.weights,
  276. opt.batch_size,
  277. opt.img_size,
  278. opt.conf_thres,
  279. opt.iou_thres,
  280. opt.save_json,
  281. opt.single_cls,
  282. opt.augment,
  283. opt.verbose,
  284. save_txt=opt.save_txt | opt.save_hybrid,
  285. save_hybrid=opt.save_hybrid,
  286. save_conf=opt.save_conf,
  287. opt=opt
  288. )
  289. elif opt.task == 'speed': # speed benchmarks
  290. for w in opt.weights:
  291. test(opt.data, w, opt.batch_size, opt.img_size, 0.25, 0.45, save_json=False, plots=False, opt=opt)
  292. elif opt.task == 'study': # run over a range of settings and save/plot
  293. # python test.py --task study --data coco.yaml --iou 0.7 --weights yolov5s.pt yolov5m.pt yolov5l.pt yolov5x.pt
  294. x = list(range(256, 1536 + 128, 128)) # x axis (image sizes)
  295. for w in opt.weights:
  296. f = f'study_{Path(opt.data).stem}_{Path(w).stem}.txt' # filename to save to
  297. y = [] # y axis
  298. for i in x: # img-size
  299. print(f'\nRunning {f} point {i}...')
  300. r, _, t = test(opt.data, w, opt.batch_size, i, opt.conf_thres, opt.iou_thres, opt.save_json,
  301. plots=False, opt=opt)
  302. y.append(r + t) # results and times
  303. np.savetxt(f, y, fmt='%10.4g') # save
  304. os.system('zip -r study.zip study_*.txt')
  305. plot_study_txt(x=x) # plot