Nelze vybrat více než 25 témat Téma musí začínat písmenem nebo číslem, může obsahovat pomlčky („-“) a může být dlouhé až 35 znaků.

torch_utils.py 14KB

před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
Merge `develop` branch into `master` (#3518) * update ci-testing.yml (#3322) * update ci-testing.yml * update greetings.yml * bring back os matrix * update ci-testing.yml (#3322) * update ci-testing.yml * update greetings.yml * bring back os matrix * Enable direct `--weights URL` definition (#3373) * Enable direct `--weights URL` definition @KalenMike this PR will enable direct --weights URL definition. Example use case: ``` python train.py --weights https://storage.googleapis.com/bucket/dir/model.pt ``` * cleanup * bug fixes * weights = attempt_download(weights) * Update experimental.py * Update hubconf.py * return bug fix * comment mirror * min_bytes * Update tutorial.ipynb (#3368) add Open in Kaggle badge * `cv2.imread(img, -1)` for IMREAD_UNCHANGED (#3379) * Update datasets.py * comment Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * COCO evolution fix (#3388) * COCO evolution fix * cleanup * update print * print fix * Create `is_pip()` function (#3391) Returns `True` if file is part of pip package. Useful for contextual behavior modification. ```python def is_pip(): # Is file in a pip package? return 'site-packages' in Path(__file__).absolute().parts ``` * Revert "`cv2.imread(img, -1)` for IMREAD_UNCHANGED (#3379)" (#3395) This reverts commit 21a9607e00f1365b21d8c4bd81bdbf5fc0efea24. * Update FLOPs description (#3422) * Update README.md * Changing FLOPS to FLOPs. Co-authored-by: BuildTools <unconfigured@null.spigotmc.org> * Parse URL authentication (#3424) * Parse URL authentication * urllib.parse.unquote() * improved error handling * improved error handling * remove %3F * update check_file() * Add FLOPs title to table (#3453) * Suppress jit trace warning + graph once (#3454) * Suppress jit trace warning + graph once Suppress harmless jit trace warning on TensorBoard add_graph call. Also fix multiple add_graph() calls bug, now only on batch 0. * Update train.py * Update MixUp augmentation `alpha=beta=32.0` (#3455) Per VOC empirical results https://github.com/ultralytics/yolov5/issues/3380#issuecomment-853001307 by @developer0hye * Add `timeout()` class (#3460) * Add `timeout()` class * rearrange order * Faster HSV augmentation (#3462) remove datatype conversion process that can be skipped * Add `check_git_status()` 5 second timeout (#3464) * Add check_git_status() 5 second timeout This should prevent the SSH Git bug that we were discussing @KalenMike * cleanup * replace timeout with check_output built-in timeout * Improved `check_requirements()` offline-handling (#3466) Improve robustness of `check_requirements()` function to offline environments (do not attempt pip installs when offline). * Add `output_names` argument for ONNX export with dynamic axes (#3456) * Add output names & dynamic axes for onnx export Add output_names and dynamic_axes names for all outputs in torch.onnx.export. The first four outputs of the model will have names output0, output1, output2, output3 * use first output only + cleanup Co-authored-by: Samridha Shrestha <samridha.shrestha@g42.ai> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Revert FP16 `test.py` and `detect.py` inference to FP32 default (#3423) * fixed inference bug ,while use half precision * replace --use-half with --half * replace space and PEP8 in detect.py * PEP8 detect.py * update --half help comment * Update test.py * revert space Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Add additional links/resources to stale.yml message (#3467) * Update stale.yml * cleanup * Update stale.yml * reformat * Update stale.yml HUB URL (#3468) * Stale `github.actor` bug fix (#3483) * Explicit `model.eval()` call `if opt.train=False` (#3475) * call model.eval() when opt.train is False call model.eval() when opt.train is False * single-line if statement * cleanup Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * check_requirements() exclude `opencv-python` (#3495) Fix for 3rd party or contrib versions of installed OpenCV as in https://github.com/ultralytics/yolov5/issues/3494. * Earlier `assert` for cpu and half option (#3508) * early assert for cpu and half option early assert for cpu and half option * Modified comment Modified comment * Update tutorial.ipynb (#3510) * Reduce test.py results spacing (#3511) * Update README.md (#3512) * Update README.md Minor modifications * 850 width * Update greetings.yml revert greeting change as PRs will now merge to master. Co-authored-by: Piotr Skalski <SkalskiP@users.noreply.github.com> Co-authored-by: SkalskiP <piotr.skalski92@gmail.com> Co-authored-by: Peretz Cohen <pizzaz93@users.noreply.github.com> Co-authored-by: tudoulei <34886368+tudoulei@users.noreply.github.com> Co-authored-by: chocosaj <chocosaj@users.noreply.github.com> Co-authored-by: BuildTools <unconfigured@null.spigotmc.org> Co-authored-by: Yonghye Kwon <developer.0hye@gmail.com> Co-authored-by: Sam_S <SamSamhuns@users.noreply.github.com> Co-authored-by: Samridha Shrestha <samridha.shrestha@g42.ai> Co-authored-by: edificewang <609552430@qq.com>
před 3 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
Merge `develop` branch into `master` (#3518) * update ci-testing.yml (#3322) * update ci-testing.yml * update greetings.yml * bring back os matrix * update ci-testing.yml (#3322) * update ci-testing.yml * update greetings.yml * bring back os matrix * Enable direct `--weights URL` definition (#3373) * Enable direct `--weights URL` definition @KalenMike this PR will enable direct --weights URL definition. Example use case: ``` python train.py --weights https://storage.googleapis.com/bucket/dir/model.pt ``` * cleanup * bug fixes * weights = attempt_download(weights) * Update experimental.py * Update hubconf.py * return bug fix * comment mirror * min_bytes * Update tutorial.ipynb (#3368) add Open in Kaggle badge * `cv2.imread(img, -1)` for IMREAD_UNCHANGED (#3379) * Update datasets.py * comment Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * COCO evolution fix (#3388) * COCO evolution fix * cleanup * update print * print fix * Create `is_pip()` function (#3391) Returns `True` if file is part of pip package. Useful for contextual behavior modification. ```python def is_pip(): # Is file in a pip package? return 'site-packages' in Path(__file__).absolute().parts ``` * Revert "`cv2.imread(img, -1)` for IMREAD_UNCHANGED (#3379)" (#3395) This reverts commit 21a9607e00f1365b21d8c4bd81bdbf5fc0efea24. * Update FLOPs description (#3422) * Update README.md * Changing FLOPS to FLOPs. Co-authored-by: BuildTools <unconfigured@null.spigotmc.org> * Parse URL authentication (#3424) * Parse URL authentication * urllib.parse.unquote() * improved error handling * improved error handling * remove %3F * update check_file() * Add FLOPs title to table (#3453) * Suppress jit trace warning + graph once (#3454) * Suppress jit trace warning + graph once Suppress harmless jit trace warning on TensorBoard add_graph call. Also fix multiple add_graph() calls bug, now only on batch 0. * Update train.py * Update MixUp augmentation `alpha=beta=32.0` (#3455) Per VOC empirical results https://github.com/ultralytics/yolov5/issues/3380#issuecomment-853001307 by @developer0hye * Add `timeout()` class (#3460) * Add `timeout()` class * rearrange order * Faster HSV augmentation (#3462) remove datatype conversion process that can be skipped * Add `check_git_status()` 5 second timeout (#3464) * Add check_git_status() 5 second timeout This should prevent the SSH Git bug that we were discussing @KalenMike * cleanup * replace timeout with check_output built-in timeout * Improved `check_requirements()` offline-handling (#3466) Improve robustness of `check_requirements()` function to offline environments (do not attempt pip installs when offline). * Add `output_names` argument for ONNX export with dynamic axes (#3456) * Add output names & dynamic axes for onnx export Add output_names and dynamic_axes names for all outputs in torch.onnx.export. The first four outputs of the model will have names output0, output1, output2, output3 * use first output only + cleanup Co-authored-by: Samridha Shrestha <samridha.shrestha@g42.ai> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Revert FP16 `test.py` and `detect.py` inference to FP32 default (#3423) * fixed inference bug ,while use half precision * replace --use-half with --half * replace space and PEP8 in detect.py * PEP8 detect.py * update --half help comment * Update test.py * revert space Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Add additional links/resources to stale.yml message (#3467) * Update stale.yml * cleanup * Update stale.yml * reformat * Update stale.yml HUB URL (#3468) * Stale `github.actor` bug fix (#3483) * Explicit `model.eval()` call `if opt.train=False` (#3475) * call model.eval() when opt.train is False call model.eval() when opt.train is False * single-line if statement * cleanup Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * check_requirements() exclude `opencv-python` (#3495) Fix for 3rd party or contrib versions of installed OpenCV as in https://github.com/ultralytics/yolov5/issues/3494. * Earlier `assert` for cpu and half option (#3508) * early assert for cpu and half option early assert for cpu and half option * Modified comment Modified comment * Update tutorial.ipynb (#3510) * Reduce test.py results spacing (#3511) * Update README.md (#3512) * Update README.md Minor modifications * 850 width * Update greetings.yml revert greeting change as PRs will now merge to master. Co-authored-by: Piotr Skalski <SkalskiP@users.noreply.github.com> Co-authored-by: SkalskiP <piotr.skalski92@gmail.com> Co-authored-by: Peretz Cohen <pizzaz93@users.noreply.github.com> Co-authored-by: tudoulei <34886368+tudoulei@users.noreply.github.com> Co-authored-by: chocosaj <chocosaj@users.noreply.github.com> Co-authored-by: BuildTools <unconfigured@null.spigotmc.org> Co-authored-by: Yonghye Kwon <developer.0hye@gmail.com> Co-authored-by: Sam_S <SamSamhuns@users.noreply.github.com> Co-authored-by: Samridha Shrestha <samridha.shrestha@g42.ai> Co-authored-by: edificewang <609552430@qq.com>
před 3 roky
před 4 roky
Merge `develop` branch into `master` (#3518) * update ci-testing.yml (#3322) * update ci-testing.yml * update greetings.yml * bring back os matrix * update ci-testing.yml (#3322) * update ci-testing.yml * update greetings.yml * bring back os matrix * Enable direct `--weights URL` definition (#3373) * Enable direct `--weights URL` definition @KalenMike this PR will enable direct --weights URL definition. Example use case: ``` python train.py --weights https://storage.googleapis.com/bucket/dir/model.pt ``` * cleanup * bug fixes * weights = attempt_download(weights) * Update experimental.py * Update hubconf.py * return bug fix * comment mirror * min_bytes * Update tutorial.ipynb (#3368) add Open in Kaggle badge * `cv2.imread(img, -1)` for IMREAD_UNCHANGED (#3379) * Update datasets.py * comment Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * COCO evolution fix (#3388) * COCO evolution fix * cleanup * update print * print fix * Create `is_pip()` function (#3391) Returns `True` if file is part of pip package. Useful for contextual behavior modification. ```python def is_pip(): # Is file in a pip package? return 'site-packages' in Path(__file__).absolute().parts ``` * Revert "`cv2.imread(img, -1)` for IMREAD_UNCHANGED (#3379)" (#3395) This reverts commit 21a9607e00f1365b21d8c4bd81bdbf5fc0efea24. * Update FLOPs description (#3422) * Update README.md * Changing FLOPS to FLOPs. Co-authored-by: BuildTools <unconfigured@null.spigotmc.org> * Parse URL authentication (#3424) * Parse URL authentication * urllib.parse.unquote() * improved error handling * improved error handling * remove %3F * update check_file() * Add FLOPs title to table (#3453) * Suppress jit trace warning + graph once (#3454) * Suppress jit trace warning + graph once Suppress harmless jit trace warning on TensorBoard add_graph call. Also fix multiple add_graph() calls bug, now only on batch 0. * Update train.py * Update MixUp augmentation `alpha=beta=32.0` (#3455) Per VOC empirical results https://github.com/ultralytics/yolov5/issues/3380#issuecomment-853001307 by @developer0hye * Add `timeout()` class (#3460) * Add `timeout()` class * rearrange order * Faster HSV augmentation (#3462) remove datatype conversion process that can be skipped * Add `check_git_status()` 5 second timeout (#3464) * Add check_git_status() 5 second timeout This should prevent the SSH Git bug that we were discussing @KalenMike * cleanup * replace timeout with check_output built-in timeout * Improved `check_requirements()` offline-handling (#3466) Improve robustness of `check_requirements()` function to offline environments (do not attempt pip installs when offline). * Add `output_names` argument for ONNX export with dynamic axes (#3456) * Add output names & dynamic axes for onnx export Add output_names and dynamic_axes names for all outputs in torch.onnx.export. The first four outputs of the model will have names output0, output1, output2, output3 * use first output only + cleanup Co-authored-by: Samridha Shrestha <samridha.shrestha@g42.ai> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Revert FP16 `test.py` and `detect.py` inference to FP32 default (#3423) * fixed inference bug ,while use half precision * replace --use-half with --half * replace space and PEP8 in detect.py * PEP8 detect.py * update --half help comment * Update test.py * revert space Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Add additional links/resources to stale.yml message (#3467) * Update stale.yml * cleanup * Update stale.yml * reformat * Update stale.yml HUB URL (#3468) * Stale `github.actor` bug fix (#3483) * Explicit `model.eval()` call `if opt.train=False` (#3475) * call model.eval() when opt.train is False call model.eval() when opt.train is False * single-line if statement * cleanup Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * check_requirements() exclude `opencv-python` (#3495) Fix for 3rd party or contrib versions of installed OpenCV as in https://github.com/ultralytics/yolov5/issues/3494. * Earlier `assert` for cpu and half option (#3508) * early assert for cpu and half option early assert for cpu and half option * Modified comment Modified comment * Update tutorial.ipynb (#3510) * Reduce test.py results spacing (#3511) * Update README.md (#3512) * Update README.md Minor modifications * 850 width * Update greetings.yml revert greeting change as PRs will now merge to master. Co-authored-by: Piotr Skalski <SkalskiP@users.noreply.github.com> Co-authored-by: SkalskiP <piotr.skalski92@gmail.com> Co-authored-by: Peretz Cohen <pizzaz93@users.noreply.github.com> Co-authored-by: tudoulei <34886368+tudoulei@users.noreply.github.com> Co-authored-by: chocosaj <chocosaj@users.noreply.github.com> Co-authored-by: BuildTools <unconfigured@null.spigotmc.org> Co-authored-by: Yonghye Kwon <developer.0hye@gmail.com> Co-authored-by: Sam_S <SamSamhuns@users.noreply.github.com> Co-authored-by: Samridha Shrestha <samridha.shrestha@g42.ai> Co-authored-by: edificewang <609552430@qq.com>
před 3 roky
Merge `develop` branch into `master` (#3518) * update ci-testing.yml (#3322) * update ci-testing.yml * update greetings.yml * bring back os matrix * update ci-testing.yml (#3322) * update ci-testing.yml * update greetings.yml * bring back os matrix * Enable direct `--weights URL` definition (#3373) * Enable direct `--weights URL` definition @KalenMike this PR will enable direct --weights URL definition. Example use case: ``` python train.py --weights https://storage.googleapis.com/bucket/dir/model.pt ``` * cleanup * bug fixes * weights = attempt_download(weights) * Update experimental.py * Update hubconf.py * return bug fix * comment mirror * min_bytes * Update tutorial.ipynb (#3368) add Open in Kaggle badge * `cv2.imread(img, -1)` for IMREAD_UNCHANGED (#3379) * Update datasets.py * comment Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * COCO evolution fix (#3388) * COCO evolution fix * cleanup * update print * print fix * Create `is_pip()` function (#3391) Returns `True` if file is part of pip package. Useful for contextual behavior modification. ```python def is_pip(): # Is file in a pip package? return 'site-packages' in Path(__file__).absolute().parts ``` * Revert "`cv2.imread(img, -1)` for IMREAD_UNCHANGED (#3379)" (#3395) This reverts commit 21a9607e00f1365b21d8c4bd81bdbf5fc0efea24. * Update FLOPs description (#3422) * Update README.md * Changing FLOPS to FLOPs. Co-authored-by: BuildTools <unconfigured@null.spigotmc.org> * Parse URL authentication (#3424) * Parse URL authentication * urllib.parse.unquote() * improved error handling * improved error handling * remove %3F * update check_file() * Add FLOPs title to table (#3453) * Suppress jit trace warning + graph once (#3454) * Suppress jit trace warning + graph once Suppress harmless jit trace warning on TensorBoard add_graph call. Also fix multiple add_graph() calls bug, now only on batch 0. * Update train.py * Update MixUp augmentation `alpha=beta=32.0` (#3455) Per VOC empirical results https://github.com/ultralytics/yolov5/issues/3380#issuecomment-853001307 by @developer0hye * Add `timeout()` class (#3460) * Add `timeout()` class * rearrange order * Faster HSV augmentation (#3462) remove datatype conversion process that can be skipped * Add `check_git_status()` 5 second timeout (#3464) * Add check_git_status() 5 second timeout This should prevent the SSH Git bug that we were discussing @KalenMike * cleanup * replace timeout with check_output built-in timeout * Improved `check_requirements()` offline-handling (#3466) Improve robustness of `check_requirements()` function to offline environments (do not attempt pip installs when offline). * Add `output_names` argument for ONNX export with dynamic axes (#3456) * Add output names & dynamic axes for onnx export Add output_names and dynamic_axes names for all outputs in torch.onnx.export. The first four outputs of the model will have names output0, output1, output2, output3 * use first output only + cleanup Co-authored-by: Samridha Shrestha <samridha.shrestha@g42.ai> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Revert FP16 `test.py` and `detect.py` inference to FP32 default (#3423) * fixed inference bug ,while use half precision * replace --use-half with --half * replace space and PEP8 in detect.py * PEP8 detect.py * update --half help comment * Update test.py * revert space Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Add additional links/resources to stale.yml message (#3467) * Update stale.yml * cleanup * Update stale.yml * reformat * Update stale.yml HUB URL (#3468) * Stale `github.actor` bug fix (#3483) * Explicit `model.eval()` call `if opt.train=False` (#3475) * call model.eval() when opt.train is False call model.eval() when opt.train is False * single-line if statement * cleanup Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * check_requirements() exclude `opencv-python` (#3495) Fix for 3rd party or contrib versions of installed OpenCV as in https://github.com/ultralytics/yolov5/issues/3494. * Earlier `assert` for cpu and half option (#3508) * early assert for cpu and half option early assert for cpu and half option * Modified comment Modified comment * Update tutorial.ipynb (#3510) * Reduce test.py results spacing (#3511) * Update README.md (#3512) * Update README.md Minor modifications * 850 width * Update greetings.yml revert greeting change as PRs will now merge to master. Co-authored-by: Piotr Skalski <SkalskiP@users.noreply.github.com> Co-authored-by: SkalskiP <piotr.skalski92@gmail.com> Co-authored-by: Peretz Cohen <pizzaz93@users.noreply.github.com> Co-authored-by: tudoulei <34886368+tudoulei@users.noreply.github.com> Co-authored-by: chocosaj <chocosaj@users.noreply.github.com> Co-authored-by: BuildTools <unconfigured@null.spigotmc.org> Co-authored-by: Yonghye Kwon <developer.0hye@gmail.com> Co-authored-by: Sam_S <SamSamhuns@users.noreply.github.com> Co-authored-by: Samridha Shrestha <samridha.shrestha@g42.ai> Co-authored-by: edificewang <609552430@qq.com>
před 3 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
před 4 roky
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347
  1. # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
  2. """
  3. PyTorch utils
  4. """
  5. import datetime
  6. import logging
  7. import math
  8. import os
  9. import platform
  10. import subprocess
  11. import time
  12. from contextlib import contextmanager
  13. from copy import deepcopy
  14. from pathlib import Path
  15. import torch
  16. import torch.backends.cudnn as cudnn
  17. import torch.distributed as dist
  18. import torch.nn as nn
  19. import torch.nn.functional as F
  20. import torchvision
  21. try:
  22. import thop # for FLOPs computation
  23. except ImportError:
  24. thop = None
  25. LOGGER = logging.getLogger(__name__)
  26. @contextmanager
  27. def torch_distributed_zero_first(local_rank: int):
  28. """
  29. Decorator to make all processes in distributed training wait for each local_master to do something.
  30. """
  31. if local_rank not in [-1, 0]:
  32. dist.barrier(device_ids=[local_rank])
  33. yield
  34. if local_rank == 0:
  35. dist.barrier(device_ids=[0])
  36. def init_torch_seeds(seed=0):
  37. # Speed-reproducibility tradeoff https://pytorch.org/docs/stable/notes/randomness.html
  38. torch.manual_seed(seed)
  39. if seed == 0: # slower, more reproducible
  40. cudnn.benchmark, cudnn.deterministic = False, True
  41. else: # faster, less reproducible
  42. cudnn.benchmark, cudnn.deterministic = True, False
  43. def date_modified(path=__file__):
  44. # return human-readable file modification date, i.e. '2021-3-26'
  45. t = datetime.datetime.fromtimestamp(Path(path).stat().st_mtime)
  46. return f'{t.year}-{t.month}-{t.day}'
  47. def git_describe(path=Path(__file__).parent): # path must be a directory
  48. # return human-readable git description, i.e. v5.0-5-g3e25f1e https://git-scm.com/docs/git-describe
  49. s = f'git -C {path} describe --tags --long --always'
  50. try:
  51. return subprocess.check_output(s, shell=True, stderr=subprocess.STDOUT).decode()[:-1]
  52. except subprocess.CalledProcessError as e:
  53. return '' # not a git repository
  54. def select_device(device='', batch_size=None):
  55. # device = 'cpu' or '0' or '0,1,2,3'
  56. s = f'YOLOv5 🚀 {git_describe() or date_modified()} torch {torch.__version__} ' # string
  57. device = str(device).strip().lower().replace('cuda:', '') # to string, 'cuda:0' to '0'
  58. cpu = device == 'cpu'
  59. if cpu:
  60. os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # force torch.cuda.is_available() = False
  61. elif device: # non-cpu device requested
  62. os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable
  63. assert torch.cuda.is_available(), f'CUDA unavailable, invalid device {device} requested' # check availability
  64. cuda = not cpu and torch.cuda.is_available()
  65. if cuda:
  66. devices = device.split(',') if device else '0' # range(torch.cuda.device_count()) # i.e. 0,1,6,7
  67. n = len(devices) # device count
  68. if n > 1 and batch_size: # check batch_size is divisible by device_count
  69. assert batch_size % n == 0, f'batch-size {batch_size} not multiple of GPU count {n}'
  70. space = ' ' * (len(s) + 1)
  71. for i, d in enumerate(devices):
  72. p = torch.cuda.get_device_properties(i)
  73. s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / 1024 ** 2}MB)\n" # bytes to MB
  74. else:
  75. s += 'CPU\n'
  76. LOGGER.info(s.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else s) # emoji-safe
  77. return torch.device('cuda:0' if cuda else 'cpu')
  78. def time_sync():
  79. # pytorch-accurate time
  80. if torch.cuda.is_available():
  81. torch.cuda.synchronize()
  82. return time.time()
  83. def profile(input, ops, n=10, device=None):
  84. # YOLOv5 speed/memory/FLOPs profiler
  85. #
  86. # Usage:
  87. # input = torch.randn(16, 3, 640, 640)
  88. # m1 = lambda x: x * torch.sigmoid(x)
  89. # m2 = nn.SiLU()
  90. # profile(input, [m1, m2], n=100) # profile over 100 iterations
  91. results = []
  92. logging.basicConfig(format="%(message)s", level=logging.INFO)
  93. device = device or select_device()
  94. print(f"{'Params':>12s}{'GFLOPs':>12s}{'GPU_mem (GB)':>14s}{'forward (ms)':>14s}{'backward (ms)':>14s}"
  95. f"{'input':>24s}{'output':>24s}")
  96. for x in input if isinstance(input, list) else [input]:
  97. x = x.to(device)
  98. x.requires_grad = True
  99. for m in ops if isinstance(ops, list) else [ops]:
  100. m = m.to(device) if hasattr(m, 'to') else m # device
  101. m = m.half() if hasattr(m, 'half') and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m
  102. tf, tb, t = 0., 0., [0., 0., 0.] # dt forward, backward
  103. try:
  104. flops = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 # GFLOPs
  105. except:
  106. flops = 0
  107. try:
  108. for _ in range(n):
  109. t[0] = time_sync()
  110. y = m(x)
  111. t[1] = time_sync()
  112. try:
  113. _ = (sum([yi.sum() for yi in y]) if isinstance(y, list) else y).sum().backward()
  114. t[2] = time_sync()
  115. except Exception as e: # no backward method
  116. print(e)
  117. t[2] = float('nan')
  118. tf += (t[1] - t[0]) * 1000 / n # ms per op forward
  119. tb += (t[2] - t[1]) * 1000 / n # ms per op backward
  120. mem = torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0 # (GB)
  121. s_in = tuple(x.shape) if isinstance(x, torch.Tensor) else 'list'
  122. s_out = tuple(y.shape) if isinstance(y, torch.Tensor) else 'list'
  123. p = sum(list(x.numel() for x in m.parameters())) if isinstance(m, nn.Module) else 0 # parameters
  124. print(f'{p:12}{flops:12.4g}{mem:>14.3f}{tf:14.4g}{tb:14.4g}{str(s_in):>24s}{str(s_out):>24s}')
  125. results.append([p, flops, mem, tf, tb, s_in, s_out])
  126. except Exception as e:
  127. print(e)
  128. results.append(None)
  129. torch.cuda.empty_cache()
  130. return results
  131. def is_parallel(model):
  132. # Returns True if model is of type DP or DDP
  133. return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel)
  134. def de_parallel(model):
  135. # De-parallelize a model: returns single-GPU model if model is of type DP or DDP
  136. return model.module if is_parallel(model) else model
  137. def intersect_dicts(da, db, exclude=()):
  138. # Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values
  139. return {k: v for k, v in da.items() if k in db and not any(x in k for x in exclude) and v.shape == db[k].shape}
  140. def initialize_weights(model):
  141. for m in model.modules():
  142. t = type(m)
  143. if t is nn.Conv2d:
  144. pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
  145. elif t is nn.BatchNorm2d:
  146. m.eps = 1e-3
  147. m.momentum = 0.03
  148. elif t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6]:
  149. m.inplace = True
  150. def find_modules(model, mclass=nn.Conv2d):
  151. # Finds layer indices matching module class 'mclass'
  152. return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)]
  153. def sparsity(model):
  154. # Return global model sparsity
  155. a, b = 0., 0.
  156. for p in model.parameters():
  157. a += p.numel()
  158. b += (p == 0).sum()
  159. return b / a
  160. def prune(model, amount=0.3):
  161. # Prune model to requested global sparsity
  162. import torch.nn.utils.prune as prune
  163. print('Pruning model... ', end='')
  164. for name, m in model.named_modules():
  165. if isinstance(m, nn.Conv2d):
  166. prune.l1_unstructured(m, name='weight', amount=amount) # prune
  167. prune.remove(m, 'weight') # make permanent
  168. print(' %.3g global sparsity' % sparsity(model))
  169. def fuse_conv_and_bn(conv, bn):
  170. # Fuse convolution and batchnorm layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/
  171. fusedconv = nn.Conv2d(conv.in_channels,
  172. conv.out_channels,
  173. kernel_size=conv.kernel_size,
  174. stride=conv.stride,
  175. padding=conv.padding,
  176. groups=conv.groups,
  177. bias=True).requires_grad_(False).to(conv.weight.device)
  178. # prepare filters
  179. w_conv = conv.weight.clone().view(conv.out_channels, -1)
  180. w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
  181. fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.shape))
  182. # prepare spatial bias
  183. b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias
  184. b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
  185. fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)
  186. return fusedconv
  187. def model_info(model, verbose=False, img_size=640):
  188. # Model information. img_size may be int or list, i.e. img_size=640 or img_size=[640, 320]
  189. n_p = sum(x.numel() for x in model.parameters()) # number parameters
  190. n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients
  191. if verbose:
  192. print('%5s %40s %9s %12s %20s %10s %10s' % ('layer', 'name', 'gradient', 'parameters', 'shape', 'mu', 'sigma'))
  193. for i, (name, p) in enumerate(model.named_parameters()):
  194. name = name.replace('module_list.', '')
  195. print('%5g %40s %9s %12g %20s %10.3g %10.3g' %
  196. (i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std()))
  197. try: # FLOPs
  198. from thop import profile
  199. stride = max(int(model.stride.max()), 32) if hasattr(model, 'stride') else 32
  200. img = torch.zeros((1, model.yaml.get('ch', 3), stride, stride), device=next(model.parameters()).device) # input
  201. flops = profile(deepcopy(model), inputs=(img,), verbose=False)[0] / 1E9 * 2 # stride GFLOPs
  202. img_size = img_size if isinstance(img_size, list) else [img_size, img_size] # expand if int/float
  203. fs = ', %.1f GFLOPs' % (flops * img_size[0] / stride * img_size[1] / stride) # 640x640 GFLOPs
  204. except (ImportError, Exception):
  205. fs = ''
  206. LOGGER.info(f"Model Summary: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}")
  207. def load_classifier(name='resnet101', n=2):
  208. # Loads a pretrained model reshaped to n-class output
  209. model = torchvision.models.__dict__[name](pretrained=True)
  210. # ResNet model properties
  211. # input_size = [3, 224, 224]
  212. # input_space = 'RGB'
  213. # input_range = [0, 1]
  214. # mean = [0.485, 0.456, 0.406]
  215. # std = [0.229, 0.224, 0.225]
  216. # Reshape output to n classes
  217. filters = model.fc.weight.shape[1]
  218. model.fc.bias = nn.Parameter(torch.zeros(n), requires_grad=True)
  219. model.fc.weight = nn.Parameter(torch.zeros(n, filters), requires_grad=True)
  220. model.fc.out_features = n
  221. return model
  222. def scale_img(img, ratio=1.0, same_shape=False, gs=32): # img(16,3,256,416)
  223. # scales img(bs,3,y,x) by ratio constrained to gs-multiple
  224. if ratio == 1.0:
  225. return img
  226. else:
  227. h, w = img.shape[2:]
  228. s = (int(h * ratio), int(w * ratio)) # new size
  229. img = F.interpolate(img, size=s, mode='bilinear', align_corners=False) # resize
  230. if not same_shape: # pad/crop img
  231. h, w = [math.ceil(x * ratio / gs) * gs for x in (h, w)]
  232. return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean
  233. def copy_attr(a, b, include=(), exclude=()):
  234. # Copy attributes from b to a, options to only include [...] and to exclude [...]
  235. for k, v in b.__dict__.items():
  236. if (len(include) and k not in include) or k.startswith('_') or k in exclude:
  237. continue
  238. else:
  239. setattr(a, k, v)
  240. class EarlyStopping:
  241. # YOLOv5 simple early stopper
  242. def __init__(self, patience=30):
  243. self.best_fitness = 0.0 # i.e. mAP
  244. self.best_epoch = 0
  245. self.patience = patience # epochs to wait after fitness stops improving to stop
  246. def __call__(self, epoch, fitness):
  247. if fitness >= self.best_fitness: # >= 0 to allow for early zero-fitness stage of training
  248. self.best_epoch = epoch
  249. self.best_fitness = fitness
  250. stop = (epoch - self.best_epoch) >= self.patience # stop training if patience exceeded
  251. if stop:
  252. LOGGER.info(f'EarlyStopping patience {self.patience} exceeded, stopping training.')
  253. return stop
  254. class ModelEMA:
  255. """ Model Exponential Moving Average from https://github.com/rwightman/pytorch-image-models
  256. Keep a moving average of everything in the model state_dict (parameters and buffers).
  257. This is intended to allow functionality like
  258. https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
  259. A smoothed version of the weights is necessary for some training schemes to perform well.
  260. This class is sensitive where it is initialized in the sequence of model init,
  261. GPU assignment and distributed training wrappers.
  262. """
  263. def __init__(self, model, decay=0.9999, updates=0):
  264. # Create EMA
  265. self.ema = deepcopy(model.module if is_parallel(model) else model).eval() # FP32 EMA
  266. # if next(model.parameters()).device.type != 'cpu':
  267. # self.ema.half() # FP16 EMA
  268. self.updates = updates # number of EMA updates
  269. self.decay = lambda x: decay * (1 - math.exp(-x / 2000)) # decay exponential ramp (to help early epochs)
  270. for p in self.ema.parameters():
  271. p.requires_grad_(False)
  272. def update(self, model):
  273. # Update EMA parameters
  274. with torch.no_grad():
  275. self.updates += 1
  276. d = self.decay(self.updates)
  277. msd = model.module.state_dict() if is_parallel(model) else model.state_dict() # model state_dict
  278. for k, v in self.ema.state_dict().items():
  279. if v.dtype.is_floating_point:
  280. v *= d
  281. v += (1. - d) * msd[k].detach()
  282. def update_attr(self, model, include=(), exclude=('process_group', 'reducer')):
  283. # Update EMA attributes
  284. copy_attr(self.ema, model, include, exclude)