You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Merge `develop` branch into `master` (#3518) * update ci-testing.yml (#3322) * update ci-testing.yml * update greetings.yml * bring back os matrix * update ci-testing.yml (#3322) * update ci-testing.yml * update greetings.yml * bring back os matrix * Enable direct `--weights URL` definition (#3373) * Enable direct `--weights URL` definition @KalenMike this PR will enable direct --weights URL definition. Example use case: ``` python train.py --weights https://storage.googleapis.com/bucket/dir/model.pt ``` * cleanup * bug fixes * weights = attempt_download(weights) * Update experimental.py * Update hubconf.py * return bug fix * comment mirror * min_bytes * Update tutorial.ipynb (#3368) add Open in Kaggle badge * `cv2.imread(img, -1)` for IMREAD_UNCHANGED (#3379) * Update datasets.py * comment Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * COCO evolution fix (#3388) * COCO evolution fix * cleanup * update print * print fix * Create `is_pip()` function (#3391) Returns `True` if file is part of pip package. Useful for contextual behavior modification. ```python def is_pip(): # Is file in a pip package? return 'site-packages' in Path(__file__).absolute().parts ``` * Revert "`cv2.imread(img, -1)` for IMREAD_UNCHANGED (#3379)" (#3395) This reverts commit 21a9607e00f1365b21d8c4bd81bdbf5fc0efea24. * Update FLOPs description (#3422) * Update README.md * Changing FLOPS to FLOPs. Co-authored-by: BuildTools <unconfigured@null.spigotmc.org> * Parse URL authentication (#3424) * Parse URL authentication * urllib.parse.unquote() * improved error handling * improved error handling * remove %3F * update check_file() * Add FLOPs title to table (#3453) * Suppress jit trace warning + graph once (#3454) * Suppress jit trace warning + graph once Suppress harmless jit trace warning on TensorBoard add_graph call. Also fix multiple add_graph() calls bug, now only on batch 0. * Update train.py * Update MixUp augmentation `alpha=beta=32.0` (#3455) Per VOC empirical results https://github.com/ultralytics/yolov5/issues/3380#issuecomment-853001307 by @developer0hye * Add `timeout()` class (#3460) * Add `timeout()` class * rearrange order * Faster HSV augmentation (#3462) remove datatype conversion process that can be skipped * Add `check_git_status()` 5 second timeout (#3464) * Add check_git_status() 5 second timeout This should prevent the SSH Git bug that we were discussing @KalenMike * cleanup * replace timeout with check_output built-in timeout * Improved `check_requirements()` offline-handling (#3466) Improve robustness of `check_requirements()` function to offline environments (do not attempt pip installs when offline). * Add `output_names` argument for ONNX export with dynamic axes (#3456) * Add output names & dynamic axes for onnx export Add output_names and dynamic_axes names for all outputs in torch.onnx.export. The first four outputs of the model will have names output0, output1, output2, output3 * use first output only + cleanup Co-authored-by: Samridha Shrestha <samridha.shrestha@g42.ai> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Revert FP16 `test.py` and `detect.py` inference to FP32 default (#3423) * fixed inference bug ,while use half precision * replace --use-half with --half * replace space and PEP8 in detect.py * PEP8 detect.py * update --half help comment * Update test.py * revert space Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Add additional links/resources to stale.yml message (#3467) * Update stale.yml * cleanup * Update stale.yml * reformat * Update stale.yml HUB URL (#3468) * Stale `github.actor` bug fix (#3483) * Explicit `model.eval()` call `if opt.train=False` (#3475) * call model.eval() when opt.train is False call model.eval() when opt.train is False * single-line if statement * cleanup Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * check_requirements() exclude `opencv-python` (#3495) Fix for 3rd party or contrib versions of installed OpenCV as in https://github.com/ultralytics/yolov5/issues/3494. * Earlier `assert` for cpu and half option (#3508) * early assert for cpu and half option early assert for cpu and half option * Modified comment Modified comment * Update tutorial.ipynb (#3510) * Reduce test.py results spacing (#3511) * Update README.md (#3512) * Update README.md Minor modifications * 850 width * Update greetings.yml revert greeting change as PRs will now merge to master. Co-authored-by: Piotr Skalski <SkalskiP@users.noreply.github.com> Co-authored-by: SkalskiP <piotr.skalski92@gmail.com> Co-authored-by: Peretz Cohen <pizzaz93@users.noreply.github.com> Co-authored-by: tudoulei <34886368+tudoulei@users.noreply.github.com> Co-authored-by: chocosaj <chocosaj@users.noreply.github.com> Co-authored-by: BuildTools <unconfigured@null.spigotmc.org> Co-authored-by: Yonghye Kwon <developer.0hye@gmail.com> Co-authored-by: Sam_S <SamSamhuns@users.noreply.github.com> Co-authored-by: Samridha Shrestha <samridha.shrestha@g42.ai> Co-authored-by: edificewang <609552430@qq.com>
3 anni fa
Merge `develop` branch into `master` (#3518) * update ci-testing.yml (#3322) * update ci-testing.yml * update greetings.yml * bring back os matrix * update ci-testing.yml (#3322) * update ci-testing.yml * update greetings.yml * bring back os matrix * Enable direct `--weights URL` definition (#3373) * Enable direct `--weights URL` definition @KalenMike this PR will enable direct --weights URL definition. Example use case: ``` python train.py --weights https://storage.googleapis.com/bucket/dir/model.pt ``` * cleanup * bug fixes * weights = attempt_download(weights) * Update experimental.py * Update hubconf.py * return bug fix * comment mirror * min_bytes * Update tutorial.ipynb (#3368) add Open in Kaggle badge * `cv2.imread(img, -1)` for IMREAD_UNCHANGED (#3379) * Update datasets.py * comment Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * COCO evolution fix (#3388) * COCO evolution fix * cleanup * update print * print fix * Create `is_pip()` function (#3391) Returns `True` if file is part of pip package. Useful for contextual behavior modification. ```python def is_pip(): # Is file in a pip package? return 'site-packages' in Path(__file__).absolute().parts ``` * Revert "`cv2.imread(img, -1)` for IMREAD_UNCHANGED (#3379)" (#3395) This reverts commit 21a9607e00f1365b21d8c4bd81bdbf5fc0efea24. * Update FLOPs description (#3422) * Update README.md * Changing FLOPS to FLOPs. Co-authored-by: BuildTools <unconfigured@null.spigotmc.org> * Parse URL authentication (#3424) * Parse URL authentication * urllib.parse.unquote() * improved error handling * improved error handling * remove %3F * update check_file() * Add FLOPs title to table (#3453) * Suppress jit trace warning + graph once (#3454) * Suppress jit trace warning + graph once Suppress harmless jit trace warning on TensorBoard add_graph call. Also fix multiple add_graph() calls bug, now only on batch 0. * Update train.py * Update MixUp augmentation `alpha=beta=32.0` (#3455) Per VOC empirical results https://github.com/ultralytics/yolov5/issues/3380#issuecomment-853001307 by @developer0hye * Add `timeout()` class (#3460) * Add `timeout()` class * rearrange order * Faster HSV augmentation (#3462) remove datatype conversion process that can be skipped * Add `check_git_status()` 5 second timeout (#3464) * Add check_git_status() 5 second timeout This should prevent the SSH Git bug that we were discussing @KalenMike * cleanup * replace timeout with check_output built-in timeout * Improved `check_requirements()` offline-handling (#3466) Improve robustness of `check_requirements()` function to offline environments (do not attempt pip installs when offline). * Add `output_names` argument for ONNX export with dynamic axes (#3456) * Add output names & dynamic axes for onnx export Add output_names and dynamic_axes names for all outputs in torch.onnx.export. The first four outputs of the model will have names output0, output1, output2, output3 * use first output only + cleanup Co-authored-by: Samridha Shrestha <samridha.shrestha@g42.ai> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Revert FP16 `test.py` and `detect.py` inference to FP32 default (#3423) * fixed inference bug ,while use half precision * replace --use-half with --half * replace space and PEP8 in detect.py * PEP8 detect.py * update --half help comment * Update test.py * revert space Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Add additional links/resources to stale.yml message (#3467) * Update stale.yml * cleanup * Update stale.yml * reformat * Update stale.yml HUB URL (#3468) * Stale `github.actor` bug fix (#3483) * Explicit `model.eval()` call `if opt.train=False` (#3475) * call model.eval() when opt.train is False call model.eval() when opt.train is False * single-line if statement * cleanup Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * check_requirements() exclude `opencv-python` (#3495) Fix for 3rd party or contrib versions of installed OpenCV as in https://github.com/ultralytics/yolov5/issues/3494. * Earlier `assert` for cpu and half option (#3508) * early assert for cpu and half option early assert for cpu and half option * Modified comment Modified comment * Update tutorial.ipynb (#3510) * Reduce test.py results spacing (#3511) * Update README.md (#3512) * Update README.md Minor modifications * 850 width * Update greetings.yml revert greeting change as PRs will now merge to master. Co-authored-by: Piotr Skalski <SkalskiP@users.noreply.github.com> Co-authored-by: SkalskiP <piotr.skalski92@gmail.com> Co-authored-by: Peretz Cohen <pizzaz93@users.noreply.github.com> Co-authored-by: tudoulei <34886368+tudoulei@users.noreply.github.com> Co-authored-by: chocosaj <chocosaj@users.noreply.github.com> Co-authored-by: BuildTools <unconfigured@null.spigotmc.org> Co-authored-by: Yonghye Kwon <developer.0hye@gmail.com> Co-authored-by: Sam_S <SamSamhuns@users.noreply.github.com> Co-authored-by: Samridha Shrestha <samridha.shrestha@g42.ai> Co-authored-by: edificewang <609552430@qq.com>
3 anni fa
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354
  1. # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
  2. """
  3. Validate a trained YOLOv5 model accuracy on a custom dataset
  4. Usage:
  5. $ python path/to/val.py --data coco128.yaml --weights yolov5s.pt --img 640
  6. """
  7. import argparse
  8. import json
  9. import os
  10. import sys
  11. from pathlib import Path
  12. from threading import Thread
  13. import numpy as np
  14. import torch
  15. from tqdm import tqdm
  16. FILE = Path(__file__).absolute()
  17. sys.path.append(FILE.parents[0].as_posix()) # add yolov5/ to path
  18. from models.experimental import attempt_load
  19. from utils.datasets import create_dataloader
  20. from utils.general import coco80_to_coco91_class, check_dataset, check_file, check_img_size, check_requirements, \
  21. box_iou, non_max_suppression, scale_coords, xyxy2xywh, xywh2xyxy, set_logging, increment_path, colorstr
  22. from utils.metrics import ap_per_class, ConfusionMatrix
  23. from utils.plots import plot_images, output_to_target, plot_study_txt
  24. from utils.torch_utils import select_device, time_sync
  25. from utils.callbacks import Callbacks
  26. def save_one_txt(predn, save_conf, shape, file):
  27. # Save one txt result
  28. gn = torch.tensor(shape)[[1, 0, 1, 0]] # normalization gain whwh
  29. for *xyxy, conf, cls in predn.tolist():
  30. xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
  31. line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
  32. with open(file, 'a') as f:
  33. f.write(('%g ' * len(line)).rstrip() % line + '\n')
  34. def save_one_json(predn, jdict, path, class_map):
  35. # Save one JSON result {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}
  36. image_id = int(path.stem) if path.stem.isnumeric() else path.stem
  37. box = xyxy2xywh(predn[:, :4]) # xywh
  38. box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
  39. for p, b in zip(predn.tolist(), box.tolist()):
  40. jdict.append({'image_id': image_id,
  41. 'category_id': class_map[int(p[5])],
  42. 'bbox': [round(x, 3) for x in b],
  43. 'score': round(p[4], 5)})
  44. def process_batch(detections, labels, iouv):
  45. """
  46. Return correct predictions matrix. Both sets of boxes are in (x1, y1, x2, y2) format.
  47. Arguments:
  48. detections (Array[N, 6]), x1, y1, x2, y2, conf, class
  49. labels (Array[M, 5]), class, x1, y1, x2, y2
  50. Returns:
  51. correct (Array[N, 10]), for 10 IoU levels
  52. """
  53. correct = torch.zeros(detections.shape[0], iouv.shape[0], dtype=torch.bool, device=iouv.device)
  54. iou = box_iou(labels[:, 1:], detections[:, :4])
  55. x = torch.where((iou >= iouv[0]) & (labels[:, 0:1] == detections[:, 5])) # IoU above threshold and classes match
  56. if x[0].shape[0]:
  57. matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy() # [label, detection, iou]
  58. if x[0].shape[0] > 1:
  59. matches = matches[matches[:, 2].argsort()[::-1]]
  60. matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
  61. # matches = matches[matches[:, 2].argsort()[::-1]]
  62. matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
  63. matches = torch.Tensor(matches).to(iouv.device)
  64. correct[matches[:, 1].long()] = matches[:, 2:3] >= iouv
  65. return correct
  66. @torch.no_grad()
  67. def run(data,
  68. weights=None, # model.pt path(s)
  69. batch_size=32, # batch size
  70. imgsz=640, # inference size (pixels)
  71. conf_thres=0.001, # confidence threshold
  72. iou_thres=0.6, # NMS IoU threshold
  73. task='val', # train, val, test, speed or study
  74. device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
  75. single_cls=False, # treat as single-class dataset
  76. augment=False, # augmented inference
  77. verbose=False, # verbose output
  78. save_txt=False, # save results to *.txt
  79. save_hybrid=False, # save label+prediction hybrid results to *.txt
  80. save_conf=False, # save confidences in --save-txt labels
  81. save_json=False, # save a COCO-JSON results file
  82. project='runs/val', # save to project/name
  83. name='exp', # save to project/name
  84. exist_ok=False, # existing project/name ok, do not increment
  85. half=True, # use FP16 half-precision inference
  86. model=None,
  87. dataloader=None,
  88. save_dir=Path(''),
  89. plots=True,
  90. callbacks=Callbacks(),
  91. compute_loss=None,
  92. ):
  93. # Initialize/load model and set device
  94. training = model is not None
  95. if training: # called by train.py
  96. device = next(model.parameters()).device # get model device
  97. else: # called directly
  98. device = select_device(device, batch_size=batch_size)
  99. # Directories
  100. save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
  101. (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
  102. # Load model
  103. model = attempt_load(weights, map_location=device) # load FP32 model
  104. gs = max(int(model.stride.max()), 32) # grid size (max stride)
  105. imgsz = check_img_size(imgsz, s=gs) # check image size
  106. # Multi-GPU disabled, incompatible with .half() https://github.com/ultralytics/yolov5/issues/99
  107. # if device.type != 'cpu' and torch.cuda.device_count() > 1:
  108. # model = nn.DataParallel(model)
  109. # Data
  110. data = check_dataset(data) # check
  111. # Half
  112. half &= device.type != 'cpu' # half precision only supported on CUDA
  113. if half:
  114. model.half()
  115. # Configure
  116. model.eval()
  117. is_coco = type(data['val']) is str and data['val'].endswith('coco/val2017.txt') # COCO dataset
  118. nc = 1 if single_cls else int(data['nc']) # number of classes
  119. iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for mAP@0.5:0.95
  120. niou = iouv.numel()
  121. # Dataloader
  122. if not training:
  123. if device.type != 'cpu':
  124. model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
  125. task = task if task in ('train', 'val', 'test') else 'val' # path to train/val/test images
  126. dataloader = create_dataloader(data[task], imgsz, batch_size, gs, single_cls, pad=0.5, rect=True,
  127. prefix=colorstr(f'{task}: '))[0]
  128. seen = 0
  129. confusion_matrix = ConfusionMatrix(nc=nc)
  130. names = {k: v for k, v in enumerate(model.names if hasattr(model, 'names') else model.module.names)}
  131. class_map = coco80_to_coco91_class() if is_coco else list(range(1000))
  132. s = ('%20s' + '%11s' * 6) % ('Class', 'Images', 'Labels', 'P', 'R', 'mAP@.5', 'mAP@.5:.95')
  133. p, r, f1, mp, mr, map50, map, t0, t1, t2 = 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.
  134. loss = torch.zeros(3, device=device)
  135. jdict, stats, ap, ap_class = [], [], [], []
  136. for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)):
  137. t_ = time_sync()
  138. img = img.to(device, non_blocking=True)
  139. img = img.half() if half else img.float() # uint8 to fp16/32
  140. img /= 255.0 # 0 - 255 to 0.0 - 1.0
  141. targets = targets.to(device)
  142. nb, _, height, width = img.shape # batch size, channels, height, width
  143. t = time_sync()
  144. t0 += t - t_
  145. # Run model
  146. out, train_out = model(img, augment=augment) # inference and training outputs
  147. t1 += time_sync() - t
  148. # Compute loss
  149. if compute_loss:
  150. loss += compute_loss([x.float() for x in train_out], targets)[1] # box, obj, cls
  151. # Run NMS
  152. targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(device) # to pixels
  153. lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling
  154. t = time_sync()
  155. out = non_max_suppression(out, conf_thres, iou_thres, labels=lb, multi_label=True, agnostic=single_cls)
  156. t2 += time_sync() - t
  157. # Statistics per image
  158. for si, pred in enumerate(out):
  159. labels = targets[targets[:, 0] == si, 1:]
  160. nl = len(labels)
  161. tcls = labels[:, 0].tolist() if nl else [] # target class
  162. path, shape = Path(paths[si]), shapes[si][0]
  163. seen += 1
  164. if len(pred) == 0:
  165. if nl:
  166. stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls))
  167. continue
  168. # Predictions
  169. if single_cls:
  170. pred[:, 5] = 0
  171. predn = pred.clone()
  172. scale_coords(img[si].shape[1:], predn[:, :4], shape, shapes[si][1]) # native-space pred
  173. # Evaluate
  174. if nl:
  175. tbox = xywh2xyxy(labels[:, 1:5]) # target boxes
  176. scale_coords(img[si].shape[1:], tbox, shape, shapes[si][1]) # native-space labels
  177. labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels
  178. correct = process_batch(predn, labelsn, iouv)
  179. if plots:
  180. confusion_matrix.process_batch(predn, labelsn)
  181. else:
  182. correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool)
  183. stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls)) # (correct, conf, pcls, tcls)
  184. # Save/log
  185. if save_txt:
  186. save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / (path.stem + '.txt'))
  187. if save_json:
  188. save_one_json(predn, jdict, path, class_map) # append to COCO-JSON dictionary
  189. callbacks.on_val_image_end(pred, predn, path, names, img[si])
  190. # Plot images
  191. if plots and batch_i < 3:
  192. f = save_dir / f'val_batch{batch_i}_labels.jpg' # labels
  193. Thread(target=plot_images, args=(img, targets, paths, f, names), daemon=True).start()
  194. f = save_dir / f'val_batch{batch_i}_pred.jpg' # predictions
  195. Thread(target=plot_images, args=(img, output_to_target(out), paths, f, names), daemon=True).start()
  196. # Compute statistics
  197. stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy
  198. if len(stats) and stats[0].any():
  199. p, r, ap, f1, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names)
  200. ap50, ap = ap[:, 0], ap.mean(1) # AP@0.5, AP@0.5:0.95
  201. mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
  202. nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class
  203. else:
  204. nt = torch.zeros(1)
  205. # Print results
  206. pf = '%20s' + '%11i' * 2 + '%11.3g' * 4 # print format
  207. print(pf % ('all', seen, nt.sum(), mp, mr, map50, map))
  208. # Print results per class
  209. if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
  210. for i, c in enumerate(ap_class):
  211. print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
  212. # Print speeds
  213. t = tuple(x / seen * 1E3 for x in (t0, t1, t2)) # speeds per image
  214. if not training:
  215. shape = (batch_size, 3, imgsz, imgsz)
  216. print(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}' % t)
  217. # Plots
  218. if plots:
  219. confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
  220. callbacks.on_val_end()
  221. # Save JSON
  222. if save_json and len(jdict):
  223. w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights
  224. anno_json = str(Path(data.get('path', '../coco')) / 'annotations/instances_val2017.json') # annotations json
  225. pred_json = str(save_dir / f"{w}_predictions.json") # predictions json
  226. print(f'\nEvaluating pycocotools mAP... saving {pred_json}...')
  227. with open(pred_json, 'w') as f:
  228. json.dump(jdict, f)
  229. try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
  230. check_requirements(['pycocotools'])
  231. from pycocotools.coco import COCO
  232. from pycocotools.cocoeval import COCOeval
  233. anno = COCO(anno_json) # init annotations api
  234. pred = anno.loadRes(pred_json) # init predictions api
  235. eval = COCOeval(anno, pred, 'bbox')
  236. if is_coco:
  237. eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.img_files] # image IDs to evaluate
  238. eval.evaluate()
  239. eval.accumulate()
  240. eval.summarize()
  241. map, map50 = eval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5)
  242. except Exception as e:
  243. print(f'pycocotools unable to run: {e}')
  244. # Return results
  245. model.float() # for training
  246. if not training:
  247. s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
  248. print(f"Results saved to {colorstr('bold', save_dir)}{s}")
  249. maps = np.zeros(nc) + map
  250. for i, c in enumerate(ap_class):
  251. maps[c] = ap[i]
  252. return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
  253. def parse_opt():
  254. parser = argparse.ArgumentParser(prog='val.py')
  255. parser.add_argument('--data', type=str, default='data/coco128.yaml', help='dataset.yaml path')
  256. parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)')
  257. parser.add_argument('--batch-size', type=int, default=32, help='batch size')
  258. parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)')
  259. parser.add_argument('--conf-thres', type=float, default=0.001, help='confidence threshold')
  260. parser.add_argument('--iou-thres', type=float, default=0.6, help='NMS IoU threshold')
  261. parser.add_argument('--task', default='val', help='train, val, test, speed or study')
  262. parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
  263. parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
  264. parser.add_argument('--augment', action='store_true', help='augmented inference')
  265. parser.add_argument('--verbose', action='store_true', help='report mAP by class')
  266. parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
  267. parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt')
  268. parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
  269. parser.add_argument('--save-json', action='store_true', help='save a COCO-JSON results file')
  270. parser.add_argument('--project', default='runs/val', help='save to project/name')
  271. parser.add_argument('--name', default='exp', help='save to project/name')
  272. parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
  273. parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
  274. opt = parser.parse_args()
  275. opt.save_json |= opt.data.endswith('coco.yaml')
  276. opt.save_txt |= opt.save_hybrid
  277. opt.data = check_file(opt.data) # check file
  278. return opt
  279. def main(opt):
  280. set_logging()
  281. print(colorstr('val: ') + ', '.join(f'{k}={v}' for k, v in vars(opt).items()))
  282. check_requirements(requirements=FILE.parent / 'requirements.txt', exclude=('tensorboard', 'thop'))
  283. if opt.task in ('train', 'val', 'test'): # run normally
  284. run(**vars(opt))
  285. elif opt.task == 'speed': # speed benchmarks
  286. for w in opt.weights if isinstance(opt.weights, list) else [opt.weights]:
  287. run(opt.data, weights=w, batch_size=opt.batch_size, imgsz=opt.imgsz, conf_thres=.25, iou_thres=.45,
  288. save_json=False, plots=False)
  289. elif opt.task == 'study': # run over a range of settings and save/plot
  290. # python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5s.pt yolov5m.pt yolov5l.pt yolov5x.pt
  291. x = list(range(256, 1536 + 128, 128)) # x axis (image sizes)
  292. for w in opt.weights if isinstance(opt.weights, list) else [opt.weights]:
  293. f = f'study_{Path(opt.data).stem}_{Path(w).stem}.txt' # filename to save to
  294. y = [] # y axis
  295. for i in x: # img-size
  296. print(f'\nRunning {f} point {i}...')
  297. r, _, t = run(opt.data, weights=w, batch_size=opt.batch_size, imgsz=i, conf_thres=opt.conf_thres,
  298. iou_thres=opt.iou_thres, save_json=opt.save_json, plots=False)
  299. y.append(r + t) # results and times
  300. np.savetxt(f, y, fmt='%10.4g') # save
  301. os.system('zip -r study.zip study_*.txt')
  302. plot_study_txt(x=x) # plot
  303. if __name__ == "__main__":
  304. opt = parse_opt()
  305. main(opt)