Você não pode selecionar mais de 25 tópicos Os tópicos devem começar com uma letra ou um número, podem incluir traços ('-') e podem ter até 35 caracteres.

experimental.py 4.0KB

4 anos atrás
4 anos atrás
4 anos atrás
4 anos atrás
precommit: yapf (#5494) * precommit: yapf * align isort * fix # Conflicts: # utils/plots.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update setup.cfg * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update setup.cfg * Update setup.cfg * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update wandb_utils.py * Update augmentations.py * Update setup.cfg * Update yolo.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update val.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * simplify colorstr * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * val run fix * export.py last comma * Update export.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update hubconf.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * PyTorch Hub tuple fix * PyTorch Hub tuple fix2 * PyTorch Hub tuple fix3 * Update setup Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
2 anos atrás
Add TensorFlow and TFLite export (#1127) * Add models/tf.py for TensorFlow and TFLite export * Set auto=False for int8 calibration * Update requirements.txt for TensorFlow and TFLite export * Read anchors directly from PyTorch weights * Add --tf-nms to append NMS in TensorFlow SavedModel and GraphDef export * Remove check_anchor_order, check_file, set_logging from import * Reformat code and optimize imports * Autodownload model and check cfg * update --source path, img-size to 320, single output * Adjust representative_dataset * Put representative dataset in tfl_int8 block * detect.py TF inference * weights to string * weights to string * cleanup tf.py * Add --dynamic-batch-size * Add xywh normalization to reduce calibration error * Update requirements.txt TensorFlow 2.3.1 -> 2.4.0 to avoid int8 quantization error * Fix imports Move C3 from models.experimental to models.common * Add models/tf.py for TensorFlow and TFLite export * Set auto=False for int8 calibration * Update requirements.txt for TensorFlow and TFLite export * Read anchors directly from PyTorch weights * Add --tf-nms to append NMS in TensorFlow SavedModel and GraphDef export * Remove check_anchor_order, check_file, set_logging from import * Reformat code and optimize imports * Autodownload model and check cfg * update --source path, img-size to 320, single output * Adjust representative_dataset * detect.py TF inference * Put representative dataset in tfl_int8 block * weights to string * weights to string * cleanup tf.py * Add --dynamic-batch-size * Add xywh normalization to reduce calibration error * Update requirements.txt TensorFlow 2.3.1 -> 2.4.0 to avoid int8 quantization error * Fix imports Move C3 from models.experimental to models.common * implement C3() and SiLU() * Fix reshape dim to support dynamic batching * Add epsilon argument in tf_BN, which is different between TF and PT * Set stride to None if not using PyTorch, and do not warmup without PyTorch * Add list support in check_img_size() * Add list input support in detect.py * sys.path.append('./') to run from yolov5/ * Add int8 quantization support for TensorFlow 2.5 * Add get_coco128.sh * Remove --no-tfl-detect in models/tf.py (Use tf-android-tfl-detect branch for EdgeTPU) * Update requirements.txt * Replace torch.load() with attempt_load() * Update requirements.txt * Add --tf-raw-resize to set half_pixel_centers=False * Add --agnostic-nms for TF class-agnostic NMS * Cleanup after merge * Cleanup2 after merge * Cleanup3 after merge * Add tf.py docstring with credit and usage * pb saved_model and tflite use only one model in detect.py * Add use cases in docstring of tf.py * Remove redundant `stride` definition * Remove keras direct import * Fix `check_requirements(('tensorflow>=2.4.1',))` Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
3 anos atrás
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104
  1. # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
  2. """
  3. Experimental modules
  4. """
  5. import math
  6. import numpy as np
  7. import torch
  8. import torch.nn as nn
  9. from models.common import Conv
  10. from utils.downloads import attempt_download
  11. class Sum(nn.Module):
  12. # Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
  13. def __init__(self, n, weight=False): # n: number of inputs
  14. super().__init__()
  15. self.weight = weight # apply weights boolean
  16. self.iter = range(n - 1) # iter object
  17. if weight:
  18. self.w = nn.Parameter(-torch.arange(1.0, n) / 2, requires_grad=True) # layer weights
  19. def forward(self, x):
  20. y = x[0] # no weight
  21. if self.weight:
  22. w = torch.sigmoid(self.w) * 2
  23. for i in self.iter:
  24. y = y + x[i + 1] * w[i]
  25. else:
  26. for i in self.iter:
  27. y = y + x[i + 1]
  28. return y
  29. class MixConv2d(nn.Module):
  30. # Mixed Depth-wise Conv https://arxiv.org/abs/1907.09595
  31. def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True): # ch_in, ch_out, kernel, stride, ch_strategy
  32. super().__init__()
  33. n = len(k) # number of convolutions
  34. if equal_ch: # equal c_ per group
  35. i = torch.linspace(0, n - 1E-6, c2).floor() # c2 indices
  36. c_ = [(i == g).sum() for g in range(n)] # intermediate channels
  37. else: # equal weight.numel() per group
  38. b = [c2] + [0] * n
  39. a = np.eye(n + 1, n, k=-1)
  40. a -= np.roll(a, 1, axis=1)
  41. a *= np.array(k) ** 2
  42. a[0] = 1
  43. c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b
  44. self.m = nn.ModuleList([
  45. nn.Conv2d(c1, int(c_), k, s, k // 2, groups=math.gcd(c1, int(c_)), bias=False) for k, c_ in zip(k, c_)])
  46. self.bn = nn.BatchNorm2d(c2)
  47. self.act = nn.SiLU()
  48. def forward(self, x):
  49. return self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
  50. class Ensemble(nn.ModuleList):
  51. # Ensemble of models
  52. def __init__(self):
  53. super().__init__()
  54. def forward(self, x, augment=False, profile=False, visualize=False):
  55. y = [module(x, augment, profile, visualize)[0] for module in self]
  56. # y = torch.stack(y).max(0)[0] # max ensemble
  57. # y = torch.stack(y).mean(0) # mean ensemble
  58. y = torch.cat(y, 1) # nms ensemble
  59. return y, None # inference, train output
  60. def attempt_load(weights, device=None, inplace=True, fuse=True):
  61. from models.yolo import Detect, Model
  62. # Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
  63. model = Ensemble()
  64. for w in weights if isinstance(weights, list) else [weights]:
  65. ckpt = torch.load(attempt_download(w))
  66. ckpt = (ckpt.get('ema') or ckpt['model']).to(device).float() # FP32 model
  67. model.append(ckpt.fuse().eval() if fuse else ckpt.eval()) # fused or un-fused model in eval mode
  68. # Compatibility updates
  69. for m in model.modules():
  70. t = type(m)
  71. if t in (nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Model):
  72. m.inplace = inplace # torch 1.7.0 compatibility
  73. if t is Detect and not isinstance(m.anchor_grid, list):
  74. delattr(m, 'anchor_grid')
  75. setattr(m, 'anchor_grid', [torch.zeros(1)] * m.nl)
  76. elif t is Conv:
  77. m._non_persistent_buffers_set = set() # torch 1.6.0 compatibility
  78. elif t is nn.Upsample and not hasattr(m, 'recompute_scale_factor'):
  79. m.recompute_scale_factor = None # torch 1.11.0 compatibility
  80. if len(model) == 1:
  81. return model[-1] # return model
  82. print(f'Ensemble created with {weights}\n')
  83. for k in 'names', 'nc', 'yaml':
  84. setattr(model, k, getattr(model[0], k))
  85. model.stride = model[torch.argmax(torch.tensor([m.stride.max() for m in model])).int()].stride # max stride
  86. assert all(model[0].nc == m.nc for m in model), f'Models have different class counts: {[m.nc for m in model]}'
  87. return model # return ensemble