Du kan inte välja fler än 25 ämnen Ämnen måste starta med en bokstav eller siffra, kan innehålla bindestreck ('-') och vara max 35 tecken långa.

hubconf.py 6.1KB

3 år sedan
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142
  1. # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
  2. """
  3. PyTorch Hub models https://pytorch.org/hub/ultralytics_yolov5/
  4. Usage:
  5. import torch
  6. model = torch.hub.load('ultralytics/yolov5', 'yolov5s')
  7. """
  8. import torch
  9. def _create(name, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
  10. """Creates a specified YOLOv5 model
  11. Arguments:
  12. name (str): name of model, i.e. 'yolov5s'
  13. pretrained (bool): load pretrained weights into the model
  14. channels (int): number of input channels
  15. classes (int): number of model classes
  16. autoshape (bool): apply YOLOv5 .autoshape() wrapper to model
  17. verbose (bool): print all information to screen
  18. device (str, torch.device, None): device to use for model parameters
  19. Returns:
  20. YOLOv5 pytorch model
  21. """
  22. from pathlib import Path
  23. from models.yolo import Model
  24. from models.experimental import attempt_load
  25. from utils.general import check_requirements, set_logging
  26. from utils.downloads import attempt_download
  27. from utils.torch_utils import select_device
  28. file = Path(__file__).resolve()
  29. check_requirements(exclude=('tensorboard', 'thop', 'opencv-python'))
  30. set_logging(verbose=verbose)
  31. save_dir = Path('') if str(name).endswith('.pt') else file.parent
  32. path = (save_dir / name).with_suffix('.pt') # checkpoint path
  33. try:
  34. device = select_device(('0' if torch.cuda.is_available() else 'cpu') if device is None else device)
  35. if pretrained and channels == 3 and classes == 80:
  36. model = attempt_load(path, map_location=device) # download/load FP32 model
  37. else:
  38. cfg = list((Path(__file__).parent / 'models').rglob(f'{name}.yaml'))[0] # model.yaml path
  39. model = Model(cfg, channels, classes) # create model
  40. if pretrained:
  41. ckpt = torch.load(attempt_download(path), map_location=device) # load
  42. msd = model.state_dict() # model state_dict
  43. csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
  44. csd = {k: v for k, v in csd.items() if msd[k].shape == v.shape} # filter
  45. model.load_state_dict(csd, strict=False) # load
  46. if len(ckpt['model'].names) == classes:
  47. model.names = ckpt['model'].names # set class names attribute
  48. if autoshape:
  49. model = model.autoshape() # for file/URI/PIL/cv2/np inputs and NMS
  50. return model.to(device)
  51. except Exception as e:
  52. help_url = 'https://github.com/ultralytics/yolov5/issues/36'
  53. s = 'Cache may be out of date, try `force_reload=True`. See %s for help.' % help_url
  54. raise Exception(s) from e
  55. def custom(path='path/to/model.pt', autoshape=True, verbose=True, device=None):
  56. # YOLOv5 custom or local model
  57. return _create(path, autoshape=autoshape, verbose=verbose, device=device)
  58. def yolov5n(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
  59. # YOLOv5-nano model https://github.com/ultralytics/yolov5
  60. return _create('yolov5n', pretrained, channels, classes, autoshape, verbose, device)
  61. def yolov5s(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
  62. # YOLOv5-small model https://github.com/ultralytics/yolov5
  63. return _create('yolov5s', pretrained, channels, classes, autoshape, verbose, device)
  64. def yolov5m(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
  65. # YOLOv5-medium model https://github.com/ultralytics/yolov5
  66. return _create('yolov5m', pretrained, channels, classes, autoshape, verbose, device)
  67. def yolov5l(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
  68. # YOLOv5-large model https://github.com/ultralytics/yolov5
  69. return _create('yolov5l', pretrained, channels, classes, autoshape, verbose, device)
  70. def yolov5x(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
  71. # YOLOv5-xlarge model https://github.com/ultralytics/yolov5
  72. return _create('yolov5x', pretrained, channels, classes, autoshape, verbose, device)
  73. def yolov5n6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
  74. # YOLOv5-nano-P6 model https://github.com/ultralytics/yolov5
  75. return _create('yolov5n6', pretrained, channels, classes, autoshape, verbose, device)
  76. def yolov5s6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
  77. # YOLOv5-small-P6 model https://github.com/ultralytics/yolov5
  78. return _create('yolov5s6', pretrained, channels, classes, autoshape, verbose, device)
  79. def yolov5m6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
  80. # YOLOv5-medium-P6 model https://github.com/ultralytics/yolov5
  81. return _create('yolov5m6', pretrained, channels, classes, autoshape, verbose, device)
  82. def yolov5l6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
  83. # YOLOv5-large-P6 model https://github.com/ultralytics/yolov5
  84. return _create('yolov5l6', pretrained, channels, classes, autoshape, verbose, device)
  85. def yolov5x6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
  86. # YOLOv5-xlarge-P6 model https://github.com/ultralytics/yolov5
  87. return _create('yolov5x6', pretrained, channels, classes, autoshape, verbose, device)
  88. if __name__ == '__main__':
  89. model = _create(name='yolov5s', pretrained=True, channels=3, classes=80, autoshape=True, verbose=True) # pretrained
  90. # model = custom(path='path/to/model.pt') # custom
  91. # Verify inference
  92. import cv2
  93. import numpy as np
  94. from PIL import Image
  95. from pathlib import Path
  96. imgs = ['data/images/zidane.jpg', # filename
  97. Path('data/images/zidane.jpg'), # Path
  98. 'https://ultralytics.com/images/zidane.jpg', # URI
  99. cv2.imread('data/images/bus.jpg')[:, :, ::-1], # OpenCV
  100. Image.open('data/images/bus.jpg'), # PIL
  101. np.zeros((320, 640, 3))] # numpy
  102. results = model(imgs) # batched inference
  103. results.print()
  104. results.save()