You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286
  1. import argparse
  2. import logging
  3. import sys
  4. from copy import deepcopy
  5. from pathlib import Path
  6. sys.path.append('./') # to run '$ python *.py' files in subdirectories
  7. logger = logging.getLogger(__name__)
  8. from models.common import *
  9. from models.experimental import MixConv2d, CrossConv
  10. from utils.autoanchor import check_anchor_order
  11. from utils.general import make_divisible, check_file, set_logging
  12. from utils.torch_utils import time_synchronized, fuse_conv_and_bn, model_info, scale_img, initialize_weights, \
  13. select_device, copy_attr
  14. try:
  15. import thop # for FLOPS computation
  16. except ImportError:
  17. thop = None
  18. class Detect(nn.Module):
  19. stride = None # strides computed during build
  20. export = False # onnx export
  21. def __init__(self, nc=80, anchors=(), ch=()): # detection layer
  22. super(Detect, self).__init__()
  23. self.nc = nc # number of classes
  24. self.no = nc + 5 # number of outputs per anchor
  25. self.nl = len(anchors) # number of detection layers
  26. self.na = len(anchors[0]) // 2 # number of anchors
  27. self.grid = [torch.zeros(1)] * self.nl # init grid
  28. a = torch.tensor(anchors).float().view(self.nl, -1, 2)
  29. self.register_buffer('anchors', a) # shape(nl,na,2)
  30. self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2)
  31. self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
  32. def forward(self, x):
  33. # x = x.copy() # for profiling
  34. z = [] # inference output
  35. self.training |= self.export
  36. for i in range(self.nl):
  37. x[i] = self.m[i](x[i]) # conv
  38. bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
  39. x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
  40. if not self.training: # inference
  41. if self.grid[i].shape[2:4] != x[i].shape[2:4]:
  42. self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
  43. y = x[i].sigmoid()
  44. y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i].to(x[i].device)) * self.stride[i] # xy
  45. y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
  46. z.append(y.view(bs, -1, self.no))
  47. return x if self.training else (torch.cat(z, 1), x)
  48. @staticmethod
  49. def _make_grid(nx=20, ny=20):
  50. yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
  51. return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
  52. class Model(nn.Module):
  53. def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None): # model, input channels, number of classes
  54. super(Model, self).__init__()
  55. if isinstance(cfg, dict):
  56. self.yaml = cfg # model dict
  57. else: # is *.yaml
  58. import yaml # for torch hub
  59. self.yaml_file = Path(cfg).name
  60. with open(cfg) as f:
  61. self.yaml = yaml.load(f, Loader=yaml.FullLoader) # model dict
  62. # Define model
  63. ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels
  64. if nc and nc != self.yaml['nc']:
  65. logger.info('Overriding model.yaml nc=%g with nc=%g' % (self.yaml['nc'], nc))
  66. self.yaml['nc'] = nc # override yaml value
  67. self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist
  68. self.names = [str(i) for i in range(self.yaml['nc'])] # default names
  69. # print([x.shape for x in self.forward(torch.zeros(1, ch, 64, 64))])
  70. # Build strides, anchors
  71. m = self.model[-1] # Detect()
  72. if isinstance(m, Detect):
  73. s = 256 # 2x min stride
  74. m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward
  75. m.anchors /= m.stride.view(-1, 1, 1)
  76. check_anchor_order(m)
  77. self.stride = m.stride
  78. self._initialize_biases() # only run once
  79. # print('Strides: %s' % m.stride.tolist())
  80. # Init weights, biases
  81. initialize_weights(self)
  82. self.info()
  83. logger.info('')
  84. def forward(self, x, augment=False, profile=False):
  85. if augment:
  86. img_size = x.shape[-2:] # height, width
  87. s = [1, 0.83, 0.67] # scales
  88. f = [None, 3, None] # flips (2-ud, 3-lr)
  89. y = [] # outputs
  90. for si, fi in zip(s, f):
  91. xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
  92. yi = self.forward_once(xi)[0] # forward
  93. # cv2.imwrite('img%g.jpg' % s, 255 * xi[0].numpy().transpose((1, 2, 0))[:, :, ::-1]) # save
  94. yi[..., :4] /= si # de-scale
  95. if fi == 2:
  96. yi[..., 1] = img_size[0] - yi[..., 1] # de-flip ud
  97. elif fi == 3:
  98. yi[..., 0] = img_size[1] - yi[..., 0] # de-flip lr
  99. y.append(yi)
  100. return torch.cat(y, 1), None # augmented inference, train
  101. else:
  102. return self.forward_once(x, profile) # single-scale inference, train
  103. def forward_once(self, x, profile=False):
  104. y, dt = [], [] # outputs
  105. for m in self.model:
  106. if m.f != -1: # if not from previous layer
  107. x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
  108. if profile:
  109. o = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPS
  110. t = time_synchronized()
  111. for _ in range(10):
  112. _ = m(x)
  113. dt.append((time_synchronized() - t) * 100)
  114. print('%10.1f%10.0f%10.1fms %-40s' % (o, m.np, dt[-1], m.type))
  115. x = m(x) # run
  116. y.append(x if m.i in self.save else None) # save output
  117. if profile:
  118. print('%.1fms total' % sum(dt))
  119. return x
  120. def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency
  121. # https://arxiv.org/abs/1708.02002 section 3.3
  122. # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
  123. m = self.model[-1] # Detect() module
  124. for mi, s in zip(m.m, m.stride): # from
  125. b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)
  126. b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
  127. b.data[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls
  128. mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  129. def _print_biases(self):
  130. m = self.model[-1] # Detect() module
  131. for mi in m.m: # from
  132. b = mi.bias.detach().view(m.na, -1).T # conv.bias(255) to (3,85)
  133. print(('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean()))
  134. # def _print_weights(self):
  135. # for m in self.model.modules():
  136. # if type(m) is Bottleneck:
  137. # print('%10.3g' % (m.w.detach().sigmoid() * 2)) # shortcut weights
  138. def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers
  139. print('Fusing layers... ')
  140. for m in self.model.modules():
  141. if type(m) is Conv and hasattr(m, 'bn'):
  142. m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv
  143. delattr(m, 'bn') # remove batchnorm
  144. m.forward = m.fuseforward # update forward
  145. self.info()
  146. return self
  147. def nms(self, mode=True): # add or remove NMS module
  148. present = type(self.model[-1]) is NMS # last layer is NMS
  149. if mode and not present:
  150. print('Adding NMS... ')
  151. m = NMS() # module
  152. m.f = -1 # from
  153. m.i = self.model[-1].i + 1 # index
  154. self.model.add_module(name='%s' % m.i, module=m) # add
  155. self.eval()
  156. elif not mode and present:
  157. print('Removing NMS... ')
  158. self.model = self.model[:-1] # remove
  159. return self
  160. def autoshape(self): # add autoShape module
  161. print('Adding autoShape... ')
  162. m = autoShape(self) # wrap model
  163. copy_attr(m, self, include=('yaml', 'nc', 'hyp', 'names', 'stride'), exclude=()) # copy attributes
  164. return m
  165. def info(self, verbose=False, img_size=640): # print model information
  166. model_info(self, verbose, img_size)
  167. def parse_model(d, ch): # model_dict, input_channels(3)
  168. logger.info('\n%3s%18s%3s%10s %-40s%-30s' % ('', 'from', 'n', 'params', 'module', 'arguments'))
  169. anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
  170. na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
  171. no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
  172. layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
  173. for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args
  174. m = eval(m) if isinstance(m, str) else m # eval strings
  175. for j, a in enumerate(args):
  176. try:
  177. args[j] = eval(a) if isinstance(a, str) else a # eval strings
  178. except:
  179. pass
  180. n = max(round(n * gd), 1) if n > 1 else n # depth gain
  181. if m in [Conv, Bottleneck, SPP, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP, C3]:
  182. c1, c2 = ch[f], args[0]
  183. # Normal
  184. # if i > 0 and args[0] != no: # channel expansion factor
  185. # ex = 1.75 # exponential (default 2.0)
  186. # e = math.log(c2 / ch[1]) / math.log(2)
  187. # c2 = int(ch[1] * ex ** e)
  188. # if m != Focus:
  189. c2 = make_divisible(c2 * gw, 8) if c2 != no else c2
  190. # Experimental
  191. # if i > 0 and args[0] != no: # channel expansion factor
  192. # ex = 1 + gw # exponential (default 2.0)
  193. # ch1 = 32 # ch[1]
  194. # e = math.log(c2 / ch1) / math.log(2) # level 1-n
  195. # c2 = int(ch1 * ex ** e)
  196. # if m != Focus:
  197. # c2 = make_divisible(c2, 8) if c2 != no else c2
  198. args = [c1, c2, *args[1:]]
  199. if m in [BottleneckCSP, C3]:
  200. args.insert(2, n)
  201. n = 1
  202. elif m is nn.BatchNorm2d:
  203. args = [ch[f]]
  204. elif m is Concat:
  205. c2 = sum([ch[x if x < 0 else x + 1] for x in f])
  206. elif m is Detect:
  207. args.append([ch[x + 1] for x in f])
  208. if isinstance(args[1], int): # number of anchors
  209. args[1] = [list(range(args[1] * 2))] * len(f)
  210. elif m is Contract:
  211. c2 = ch[f if f < 0 else f + 1] * args[0] ** 2
  212. elif m is Expand:
  213. c2 = ch[f if f < 0 else f + 1] // args[0] ** 2
  214. else:
  215. c2 = ch[f if f < 0 else f + 1]
  216. m_ = nn.Sequential(*[m(*args) for _ in range(n)]) if n > 1 else m(*args) # module
  217. t = str(m)[8:-2].replace('__main__.', '') # module type
  218. np = sum([x.numel() for x in m_.parameters()]) # number params
  219. m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
  220. logger.info('%3s%18s%3s%10.0f %-40s%-30s' % (i, f, n, np, t, args)) # print
  221. save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
  222. layers.append(m_)
  223. ch.append(c2)
  224. return nn.Sequential(*layers), sorted(save)
  225. if __name__ == '__main__':
  226. parser = argparse.ArgumentParser()
  227. parser.add_argument('--cfg', type=str, default='yolov5s.yaml', help='model.yaml')
  228. parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
  229. opt = parser.parse_args()
  230. opt.cfg = check_file(opt.cfg) # check file
  231. set_logging()
  232. device = select_device(opt.device)
  233. # Create model
  234. model = Model(opt.cfg).to(device)
  235. model.train()
  236. # Profile
  237. # img = torch.rand(8 if torch.cuda.is_available() else 1, 3, 640, 640).to(device)
  238. # y = model(img, profile=True)
  239. # Tensorboard
  240. # from torch.utils.tensorboard import SummaryWriter
  241. # tb_writer = SummaryWriter()
  242. # print("Run 'tensorboard --logdir=models/runs' to view tensorboard at http://localhost:6006/")
  243. # tb_writer.add_graph(model.model, img) # add model to tensorboard
  244. # tb_writer.add_image('test', img[0], dataformats='CWH') # add model to tensorboard