- # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
- """
- Run a Flask REST API exposing a YOLOv5s model
- """
-
- import argparse
- import io
-
- import torch
- from flask import Flask, request
- from PIL import Image
-
- app = Flask(__name__)
-
- DETECTION_URL = "/v1/object-detection/yolov5s"
-
-
- @app.route(DETECTION_URL, methods=["POST"])
- def predict():
- if not request.method == "POST":
- return
-
- if request.files.get("image"):
- # Method 1
- # with request.files["image"] as f:
- # im = Image.open(io.BytesIO(f.read()))
-
- # Method 2
- im_file = request.files["image"]
- im_bytes = im_file.read()
- im = Image.open(io.BytesIO(im_bytes))
-
- results = model(im, size=640) # reduce size=320 for faster inference
- return results.pandas().xyxy[0].to_json(orient="records")
-
-
- if __name__ == "__main__":
- parser = argparse.ArgumentParser(description="Flask API exposing YOLOv5 model")
- parser.add_argument("--port", default=5000, type=int, help="port number")
- opt = parser.parse_args()
-
- # Fix known issue urllib.error.HTTPError 403: rate limit exceeded https://github.com/ultralytics/yolov5/pull/7210
- torch.hub._validate_not_a_forked_repo = lambda a, b, c: True
-
- model = torch.hub.load("ultralytics/yolov5", "yolov5s", force_reload=True) # force_reload to recache
- app.run(host="0.0.0.0", port=opt.port) # debug=True causes Restarting with stat
|