Explorar el Código

update expt name comment and folder parsing for training (#978)

* comment

* fix parsing

* fix evolve

* folder

* tqdm

* Update train.py

* Update train.py

* reinstate anchors into meta dict

anchor evolution is working correctly now

* reinstate logger

prefer the single line readout for concise logging, which helps simplify notebook and tutorials etc.

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
5.0
Jirka Borovec GitHub hace 4 años
padre
commit
00917a6225
No se encontró ninguna clave conocida en la base de datos para esta firma ID de clave GPG: 4AEE18F83AFDEB23
Se han modificado 2 ficheros con 14 adiciones y 9 borrados
  1. +7
    -6
      train.py
  2. +7
    -3
      utils/general.py

+ 7
- 6
train.py Ver fichero

@@ -207,7 +207,8 @@ def train(hyp, opt, device, tb_writer=None):
results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
scheduler.last_epoch = start_epoch - 1 # do not move
scaler = amp.GradScaler(enabled=cuda)
logger.info('Image sizes %g train, %g test\nUsing %g dataloader workers\nLogging results to %s\n'
logger.info('Image sizes %g train, %g test\n'
'Using %g dataloader workers\nLogging results to %s\n'
'Starting training for %g epochs...' % (imgsz, imgsz_test, dataloader.num_workers, log_dir, epochs))
for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
model.train()
@@ -393,7 +394,7 @@ if __name__ == '__main__':
parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
parser.add_argument('--name', default='', help='renames results.txt to results_name.txt if supplied')
parser.add_argument('--name', default='', help='renames experiment folder exp{N} to exp{N}_{name} if supplied')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset')
@@ -448,7 +449,7 @@ if __name__ == '__main__':
if not opt.evolve:
tb_writer = None
if opt.global_rank in [-1, 0]:
logger.info('Start Tensorboard with "tensorboard --logdir %s", view at http://localhost:6006/' % opt.logdir)
logger.info(f'Start Tensorboard with "tensorboard --logdir {opt.logdir}", view at http://localhost:6006/')
tb_writer = SummaryWriter(log_dir=log_dir) # runs/exp0

train(hyp, opt, device, tb_writer)
@@ -488,7 +489,7 @@ if __name__ == '__main__':
assert opt.local_rank == -1, 'DDP mode not implemented for --evolve'
opt.notest, opt.nosave = True, True # only test/save final epoch
# ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
yaml_file = Path('runs/evolve/hyp_evolved.yaml') # save best result here
yaml_file = Path(opt.logdir) / 'evolve' / 'hyp_evolved.yaml' # save best result here
if opt.bucket:
os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket) # download evolve.txt if exists

@@ -532,5 +533,5 @@ if __name__ == '__main__':

# Plot results
plot_evolution(yaml_file)
print('Hyperparameter evolution complete. Best results saved as: %s\nCommand to train a new model with these '
'hyperparameters: $ python train.py --hyp %s' % (yaml_file, yaml_file))
print(f'Hyperparameter evolution complete. Best results saved as: {yaml_file}\n'
f'Command to train a new model with these hyperparameters: $ python train.py --hyp {yaml_file}')

+ 7
- 3
utils/general.py Ver fichero

@@ -7,6 +7,7 @@ import random
import shutil
import subprocess
import time
import re
from contextlib import contextmanager
from copy import copy
from pathlib import Path
@@ -952,9 +953,12 @@ def increment_dir(dir, comment=''):
# Increments a directory runs/exp1 --> runs/exp2_comment
n = 0 # number
dir = str(Path(dir)) # os-agnostic
d = sorted(glob.glob(dir + '*')) # directories
if len(d):
n = max([int(x[len(dir):x.rfind('_') if '_' in Path(x).name else None]) for x in d]) + 1 # increment
dirs = sorted(glob.glob(dir + '*')) # directories
if dirs:
matches = [re.search(r"exp(\d+)", d) for d in dirs]
idxs = [int(m.groups()[0]) for m in matches if m]
if idxs:
n = max(idxs) + 1 # increment
return dir + str(n) + ('_' + comment if comment else '')



Cargando…
Cancelar
Guardar