Browse Source

Merge remote-tracking branch 'origin/master'

5.0
Glenn Jocher 4 years ago
parent
commit
01a67a9742
4 changed files with 64 additions and 69 deletions
  1. +2
    -2
      models/export.py
  2. +6
    -7
      train.py
  3. +52
    -54
      utils/datasets.py
  4. +4
    -6
      utils/utils.py

+ 2
- 2
models/export.py View File

@@ -31,7 +31,7 @@ if __name__ == '__main__':
# TorchScript export
try:
print('\nStarting TorchScript export with torch %s...' % torch.__version__)
f = opt.weights.replace('.pt', '.torchscript') # filename
f = opt.weights.replace('.pt', '.torchscript.pt') # filename
ts = torch.jit.trace(model, img)
ts.save(f)
print('TorchScript export success, saved as %s' % f)
@@ -62,7 +62,7 @@ if __name__ == '__main__':

print('\nStarting CoreML export with coremltools %s...' % ct.__version__)
# convert model from torchscript and apply pixel scaling as per detect.py
model = ct.convert(ts, inputs=[ct.ImageType(name='images', shape=img.shape, scale=1/255.0, bias=[0, 0, 0])])
model = ct.convert(ts, inputs=[ct.ImageType(name='images', shape=img.shape, scale=1 / 255.0, bias=[0, 0, 0])])
f = opt.weights.replace('.pt', '.mlmodel') # filename
model.save(f)
print('CoreML export success, saved as %s' % f)

+ 6
- 7
train.py View File

@@ -44,7 +44,7 @@ hyp = {'optimizer': 'SGD', # ['adam', 'SGD', None] if none, default is SGD

def train(hyp):
print(f'Hyperparameters {hyp}')
log_dir = tb_writer.log_dir # run directory
log_dir = tb_writer.log_dir if tb_writer else 'runs/evolution' # run directory
wdir = str(Path(log_dir) / 'weights') + os.sep # weights directory

os.makedirs(wdir, exist_ok=True)
@@ -387,7 +387,10 @@ if __name__ == '__main__':
opt.weights = last if opt.resume and not opt.weights else opt.weights
opt.cfg = check_file(opt.cfg) # check file
opt.data = check_file(opt.data) # check file
opt.hyp = check_file(opt.hyp) if opt.hyp else '' # check file
if opt.hyp: # update hyps
opt.hyp = check_file(opt.hyp) # check file
with open(opt.hyp) as f:
hyp.update(yaml.load(f, Loader=yaml.FullLoader)) # update hyps
print(opt)
opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, test)
device = torch_utils.select_device(opt.device, apex=mixed_precision, batch_size=opt.batch_size)
@@ -396,12 +399,8 @@ if __name__ == '__main__':

# Train
if not opt.evolve:
print('Start Tensorboard with "tensorboard --logdir=runs", view at http://localhost:6006/')
tb_writer = SummaryWriter(log_dir=increment_dir('runs/exp', opt.name))
if opt.hyp: # update hyps
with open(opt.hyp) as f:
hyp.update(yaml.load(f, Loader=yaml.FullLoader))

print('Start Tensorboard with "tensorboard --logdir=runs", view at http://localhost:6006/')
train(hyp)

# Evolve hyperparameters (optional)

+ 52
- 54
utils/datasets.py View File

@@ -26,6 +26,11 @@ for orientation in ExifTags.TAGS.keys():
break


def get_hash(files):
# Returns a single hash value of a list of files
return sum(os.path.getsize(f) for f in files if os.path.isfile(f))


def exif_size(img):
# Returns exif-corrected PIL size
s = img.size # (width, height)
@@ -280,7 +285,7 @@ class LoadImagesAndLabels(Dataset): # for training/testing
def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False,
cache_images=False, single_cls=False, stride=32, pad=0.0):
try:
f = []
f = [] # image files
for p in path if isinstance(path, list) else [path]:
p = str(Path(p)) # os-agnostic
parent = str(Path(p).parent) + os.sep
@@ -292,7 +297,6 @@ class LoadImagesAndLabels(Dataset): # for training/testing
f += glob.iglob(p + os.sep + '*.*')
else:
raise Exception('%s does not exist' % p)
path = p # *.npy dir
self.img_files = [x.replace('/', os.sep) for x in f if os.path.splitext(x)[-1].lower() in img_formats]
except Exception as e:
raise Exception('Error loading data from %s: %s\nSee %s' % (path, e, help_url))
@@ -314,20 +318,22 @@ class LoadImagesAndLabels(Dataset): # for training/testing
self.stride = stride

# Define labels
self.label_files = [x.replace('images', 'labels').replace(os.path.splitext(x)[-1], '.txt')
for x in self.img_files]

# Read image shapes (wh)
sp = path.replace('.txt', '') + '.shapes' # shapefile path
try:
with open(sp, 'r') as f: # read existing shapefile
s = [x.split() for x in f.read().splitlines()]
assert len(s) == n, 'Shapefile out of sync'
except:
s = [exif_size(Image.open(f)) for f in tqdm(self.img_files, desc='Reading image shapes')]
np.savetxt(sp, s, fmt='%g') # overwrites existing (if any)
self.label_files = [x.replace('images', 'labels').replace(os.path.splitext(x)[-1], '.txt') for x in
self.img_files]

# Check cache
cache_path = str(Path(self.label_files[0]).parent) + '.cache' # cached labels
if os.path.isfile(cache_path):
cache = torch.load(cache_path) # load
if cache['hash'] != get_hash(self.label_files + self.img_files): # dataset changed
cache = self.cache_labels(cache_path) # re-cache
else:
cache = self.cache_labels(cache_path) # cache

self.shapes = np.array(s, dtype=np.float64)
# Get labels
labels, shapes = zip(*[cache[x] for x in self.img_files])
self.shapes = np.array(shapes, dtype=np.float64)
self.labels = list(labels)

# Rectangular Training https://github.com/ultralytics/yolov3/issues/232
if self.rect:
@@ -337,6 +343,7 @@ class LoadImagesAndLabels(Dataset): # for training/testing
irect = ar.argsort()
self.img_files = [self.img_files[i] for i in irect]
self.label_files = [self.label_files[i] for i in irect]
self.labels = [self.labels[i] for i in irect]
self.shapes = s[irect] # wh
ar = ar[irect]

@@ -353,33 +360,11 @@ class LoadImagesAndLabels(Dataset): # for training/testing
self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int) * stride

# Cache labels
self.imgs = [None] * n
self.labels = [np.zeros((0, 5), dtype=np.float32)] * n
create_datasubset, extract_bounding_boxes, labels_loaded = False, False, False
nm, nf, ne, ns, nd = 0, 0, 0, 0, 0 # number missing, found, empty, datasubset, duplicate
np_labels_path = str(Path(self.label_files[0]).parent) + '.npy' # saved labels in *.npy file
if os.path.isfile(np_labels_path):
s = np_labels_path # print string
x = np.load(np_labels_path, allow_pickle=True)
if len(x) == n:
self.labels = x
labels_loaded = True
else:
s = path.replace('images', 'labels')

pbar = tqdm(self.label_files)
for i, file in enumerate(pbar):
if labels_loaded:
l = self.labels[i]
# np.savetxt(file, l, '%g') # save *.txt from *.npy file
else:
try:
with open(file, 'r') as f:
l = np.array([x.split() for x in f.read().splitlines()], dtype=np.float32)
except:
nm += 1 # print('missing labels for image %s' % self.img_files[i]) # file missing
continue

l = self.labels[i] # label
if l.shape[0]:
assert l.shape[1] == 5, '> 5 label columns: %s' % file
assert (l >= 0).all(), 'negative labels: %s' % file
@@ -425,15 +410,13 @@ class LoadImagesAndLabels(Dataset): # for training/testing
ne += 1 # print('empty labels for image %s' % self.img_files[i]) # file empty
# os.system("rm '%s' '%s'" % (self.img_files[i], self.label_files[i])) # remove

pbar.desc = 'Caching labels %s (%g found, %g missing, %g empty, %g duplicate, for %g images)' % (
s, nf, nm, ne, nd, n)
assert nf > 0 or n == 20288, 'No labels found in %s. See %s' % (os.path.dirname(file) + os.sep, help_url)
if not labels_loaded and n > 1000:
print('Saving labels to %s for faster future loading' % np_labels_path)
np.save(np_labels_path, self.labels) # save for next time
pbar.desc = 'Scanning labels %s (%g found, %g missing, %g empty, %g duplicate, for %g images)' % (
cache_path, nf, nm, ne, nd, n)
assert nf > 0, 'No labels found in %s. See %s' % (os.path.dirname(file) + os.sep, help_url)

# Cache images into memory for faster training (WARNING: large datasets may exceed system RAM)
if cache_images: # if training
self.imgs = [None] * n
if cache_images:
gb = 0 # Gigabytes of cached images
pbar = tqdm(range(len(self.img_files)), desc='Caching images')
self.img_hw0, self.img_hw = [None] * n, [None] * n
@@ -442,15 +425,30 @@ class LoadImagesAndLabels(Dataset): # for training/testing
gb += self.imgs[i].nbytes
pbar.desc = 'Caching images (%.1fGB)' % (gb / 1E9)

# Detect corrupted images https://medium.com/joelthchao/programmatically-detect-corrupted-image-8c1b2006c3d3
detect_corrupted_images = False
if detect_corrupted_images:
from skimage import io # conda install -c conda-forge scikit-image
for file in tqdm(self.img_files, desc='Detecting corrupted images'):
try:
_ = io.imread(file)
except:
print('Corrupted image detected: %s' % file)
def cache_labels(self, path='labels.cache'):
# Cache dataset labels, check images and read shapes
x = {} # dict
pbar = tqdm(zip(self.img_files, self.label_files), desc='Scanning images', total=len(self.img_files))
for (img, label) in pbar:
try:
l = []
image = Image.open(img)
image.verify() # PIL verify
# _ = io.imread(img) # skimage verify (from skimage import io)
shape = exif_size(image) # image size
if os.path.isfile(label):
with open(label, 'r') as f:
l = np.array([x.split() for x in f.read().splitlines()], dtype=np.float32) # labels
if len(l) == 0:
l = np.zeros((0, 5), dtype=np.float32)
x[img] = [l, shape]
except Exception as e:
x[img] = None
print('WARNING: %s: %s' % (img, e))

x['hash'] = get_hash(self.label_files + self.img_files)
torch.save(x, path) # save for next time
return x

def __len__(self):
return len(self.img_files)

+ 4
- 6
utils/utils.py View File

@@ -45,7 +45,7 @@ def get_latest_run(search_dir='./runs'):

def check_git_status():
# Suggest 'git pull' if repo is out of date
if platform in ['linux', 'darwin']:
if platform in ['linux', 'darwin'] and not os.path.isfile('/.dockerenv'):
s = subprocess.check_output('if [ -d .git ]; then git fetch && git status -uno; fi', shell=True).decode('utf-8')
if 'Your branch is behind' in s:
print(s[s.find('Your branch is behind'):s.find('\n\n')] + '\n')
@@ -636,14 +636,12 @@ def strip_optimizer(f='weights/best.pt'): # from utils.utils import *; strip_op
x['optimizer'] = None
x['model'].half() # to FP16
torch.save(x, f)
print('Optimizer stripped from %s' % f)
print('Optimizer stripped from %s, %.1fMB' % (f, os.path.getsize(f) / 1E6))


def create_pretrained(f='weights/best.pt', s='weights/pretrained.pt'): # from utils.utils import *; create_pretrained()
# create pretrained checkpoint 's' from 'f' (create_pretrained(x, x) for x in glob.glob('./*.pt'))
device = torch.device('cpu')
x = torch.load(s, map_location=device)

x = torch.load(f, map_location=torch.device('cpu'))
x['optimizer'] = None
x['training_results'] = None
x['epoch'] = -1
@@ -651,7 +649,7 @@ def create_pretrained(f='weights/best.pt', s='weights/pretrained.pt'): # from u
for p in x['model'].parameters():
p.requires_grad = True
torch.save(x, s)
print('%s saved as pretrained checkpoint %s' % (f, s))
print('%s saved as pretrained checkpoint %s, %.1fMB' % (f, s, os.path.getsize(s) / 1E6))


def coco_class_count(path='../coco/labels/train2014/'):

Loading…
Cancel
Save