|
|
@@ -96,11 +96,14 @@ if __name__ == '__main__': |
|
|
|
|
|
|
|
print(f'{prefix} starting export with onnx {onnx.__version__}...') |
|
|
|
f = opt.weights.replace('.pt', '.onnx') # filename |
|
|
|
torch.onnx.export(model, img, f, verbose=False, opset_version=opt.opset_version, input_names=['images'], |
|
|
|
torch.onnx.export(model, img, f, verbose=False, opset_version=opt.opset_version, |
|
|
|
training=torch.onnx.TrainingMode.TRAINING if opt.train else torch.onnx.TrainingMode.EVAL, |
|
|
|
do_constant_folding=not opt.train, |
|
|
|
dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'}, # size(1,3,640,640) |
|
|
|
'output': {0: 'batch', 2: 'y', 3: 'x'}} if opt.dynamic else None) |
|
|
|
input_names=['images'], |
|
|
|
output_names=['output'], |
|
|
|
dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'}, # shape(1,3,640,640) |
|
|
|
'output': {0: 'batch', 1: 'anchors'} # shape(1,25200,85) |
|
|
|
} if opt.dynamic else None) |
|
|
|
|
|
|
|
# Checks |
|
|
|
model_onnx = onnx.load(f) # load onnx model |