|
|
@@ -42,7 +42,6 @@ logger = logging.getLogger(__name__) |
|
|
|
def train(hyp, # path/to/hyp.yaml or hyp dictionary |
|
|
|
opt, |
|
|
|
device, |
|
|
|
tb_writer=None |
|
|
|
): |
|
|
|
save_dir, epochs, batch_size, total_batch_size, weights, rank, single_cls = \ |
|
|
|
Path(opt.save_dir), opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank, \ |
|
|
@@ -74,9 +73,16 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary |
|
|
|
with open(opt.data) as f: |
|
|
|
data_dict = yaml.safe_load(f) # data dict |
|
|
|
|
|
|
|
# Logging- Doing this before checking the dataset. Might update data_dict |
|
|
|
loggers = {'wandb': None} # loggers dict |
|
|
|
# Loggers |
|
|
|
loggers = {'wandb': None, 'tb': None} # loggers dict |
|
|
|
if rank in [-1, 0]: |
|
|
|
# TensorBoard |
|
|
|
if not opt.evolve: |
|
|
|
prefix = colorstr('tensorboard: ') |
|
|
|
logger.info(f"{prefix}Start with 'tensorboard --logdir {opt.project}', view at http://localhost:6006/") |
|
|
|
loggers['tb'] = SummaryWriter(opt.save_dir) |
|
|
|
|
|
|
|
# W&B |
|
|
|
opt.hyp = hyp # add hyperparameters |
|
|
|
run_id = torch.load(weights).get('wandb_id') if weights.endswith('.pt') and os.path.isfile(weights) else None |
|
|
|
wandb_logger = WandbLogger(opt, save_dir.stem, run_id, data_dict) |
|
|
@@ -219,8 +225,8 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary |
|
|
|
# model._initialize_biases(cf.to(device)) |
|
|
|
if plots: |
|
|
|
plot_labels(labels, names, save_dir, loggers) |
|
|
|
if tb_writer: |
|
|
|
tb_writer.add_histogram('classes', c, 0) |
|
|
|
if loggers['tb']: |
|
|
|
loggers['tb'].add_histogram('classes', c, 0) # TensorBoard |
|
|
|
|
|
|
|
# Anchors |
|
|
|
if not opt.noautoanchor: |
|
|
@@ -341,10 +347,10 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary |
|
|
|
if plots and ni < 3: |
|
|
|
f = save_dir / f'train_batch{ni}.jpg' # filename |
|
|
|
Thread(target=plot_images, args=(imgs, targets, paths, f), daemon=True).start() |
|
|
|
if tb_writer and ni == 0: |
|
|
|
if loggers['tb'] and ni == 0: # TensorBoard |
|
|
|
with warnings.catch_warnings(): |
|
|
|
warnings.simplefilter('ignore') # suppress jit trace warning |
|
|
|
tb_writer.add_graph(torch.jit.trace(de_parallel(model), imgs[0:1], strict=False), []) |
|
|
|
loggers['tb'].add_graph(torch.jit.trace(de_parallel(model), imgs[0:1], strict=False), []) |
|
|
|
elif plots and ni == 10 and wandb_logger.wandb: |
|
|
|
wandb_logger.log({'Mosaics': [wandb_logger.wandb.Image(str(x), caption=x.name) for x in |
|
|
|
save_dir.glob('train*.jpg') if x.exists()]}) |
|
|
@@ -352,7 +358,7 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary |
|
|
|
# end batch ------------------------------------------------------------------------------------------------ |
|
|
|
|
|
|
|
# Scheduler |
|
|
|
lr = [x['lr'] for x in optimizer.param_groups] # for tensorboard |
|
|
|
lr = [x['lr'] for x in optimizer.param_groups] # for loggers |
|
|
|
scheduler.step() |
|
|
|
|
|
|
|
# DDP process 0 or single-GPU |
|
|
@@ -385,8 +391,8 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary |
|
|
|
'val/box_loss', 'val/obj_loss', 'val/cls_loss', # val loss |
|
|
|
'x/lr0', 'x/lr1', 'x/lr2'] # params |
|
|
|
for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags): |
|
|
|
if tb_writer: |
|
|
|
tb_writer.add_scalar(tag, x, epoch) # tensorboard |
|
|
|
if loggers['tb']: |
|
|
|
loggers['tb'].add_scalar(tag, x, epoch) # TensorBoard |
|
|
|
if wandb_logger.wandb: |
|
|
|
wandb_logger.log({tag: x}) # W&B |
|
|
|
|
|
|
@@ -537,12 +543,7 @@ if __name__ == '__main__': |
|
|
|
# Train |
|
|
|
logger.info(opt) |
|
|
|
if not opt.evolve: |
|
|
|
tb_writer = None # init loggers |
|
|
|
if opt.global_rank in [-1, 0]: |
|
|
|
prefix = colorstr('tensorboard: ') |
|
|
|
logger.info(f"{prefix}Start with 'tensorboard --logdir {opt.project}', view at http://localhost:6006/") |
|
|
|
tb_writer = SummaryWriter(opt.save_dir) # Tensorboard |
|
|
|
train(opt.hyp, opt, device, tb_writer) |
|
|
|
train(opt.hyp, opt, device) |
|
|
|
|
|
|
|
# Evolve hyperparameters (optional) |
|
|
|
else: |