@@ -39,13 +39,13 @@ COPY . /usr/src/app | |||
# sudo docker kill $(sudo docker ps -q) | |||
# Kill all image-based | |||
# sudo docker kill $(sudo docker ps -a -q --filter ancestor=ultralytics/yolov5:latest) | |||
# sudo docker kill $(sudo docker ps -qa --filter ancestor=ultralytics/yolov5:latest) | |||
# Bash into running container | |||
# sudo docker exec -it 5a9b5863d93d bash | |||
# Bash into stopped container | |||
# id=5a9b5863d93d && sudo docker start $id && sudo docker exec -it $id bash | |||
# id=$(sudo docker ps -qa) && sudo docker start $id && sudo docker exec -it $id bash | |||
# Send weights to GCP | |||
# python -c "from utils.general import *; strip_optimizer('runs/train/exp0_*/weights/best.pt', 'tmp.pt')" && gsutil cp tmp.pt gs://*.pt |
@@ -107,7 +107,7 @@ class Model(nn.Module): | |||
for si, fi in zip(s, f): | |||
xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max())) | |||
yi = self.forward_once(xi)[0] # forward | |||
# cv2.imwrite('img%g.jpg' % s, 255 * xi[0].numpy().transpose((1, 2, 0))[:, :, ::-1]) # save | |||
# cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # save | |||
yi[..., :4] /= si # de-scale | |||
if fi == 2: | |||
yi[..., 1] = img_size[0] - yi[..., 1] # de-flip ud |
@@ -631,10 +631,16 @@ def augment_hsv(img, hgain=0.5, sgain=0.5, vgain=0.5): | |||
img_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))).astype(dtype) | |||
cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed | |||
# Histogram equalization | |||
# if random.random() < 0.2: | |||
# for i in range(3): | |||
# img[:, :, i] = cv2.equalizeHist(img[:, :, i]) | |||
def hist_equalize(img, clahe=True, bgr=False): | |||
# Equalize histogram on BGR image 'img' with img.shape(n,m,3) and range 0-255 | |||
yuv = cv2.cvtColor(img, cv2.COLOR_BGR2YUV if bgr else cv2.COLOR_RGB2YUV) | |||
if clahe: | |||
c = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8)) | |||
yuv[:, :, 0] = c.apply(yuv[:, :, 0]) | |||
else: | |||
yuv[:, :, 0] = cv2.equalizeHist(yuv[:, :, 0]) # equalize Y channel histogram | |||
return cv2.cvtColor(yuv, cv2.COLOR_YUV2BGR if bgr else cv2.COLOR_YUV2RGB) # convert YUV image to RGB | |||
def load_mosaic(self, index): |