|
|
@@ -1,4 +1,5 @@ |
|
|
|
import argparse |
|
|
|
import glob |
|
|
|
import logging |
|
|
|
import math |
|
|
|
import os |
|
|
@@ -311,6 +312,8 @@ def train(hyp, opt, device, tb_writer=None): |
|
|
|
ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride']) |
|
|
|
final_epoch = epoch + 1 == epochs |
|
|
|
if not opt.notest or final_epoch: # Calculate mAP |
|
|
|
if final_epoch: # replot predictions |
|
|
|
[os.remove(x) for x in glob.glob(str(log_dir / 'test_batch*_pred.jpg')) if os.path.exists(x)] |
|
|
|
results, maps, times = test.test(opt.data, |
|
|
|
batch_size=total_batch_size, |
|
|
|
imgsz=imgsz_test, |
|
|
@@ -359,9 +362,9 @@ def train(hyp, opt, device, tb_writer=None): |
|
|
|
|
|
|
|
if rank in [-1, 0]: |
|
|
|
# Strip optimizers |
|
|
|
n = ('_' if len(opt.name) and not opt.name.isnumeric() else '') + opt.name |
|
|
|
fresults, flast, fbest = 'results%s.txt' % n, wdir / f'last{n}.pt', wdir / f'best{n}.pt' |
|
|
|
for f1, f2 in zip([wdir / 'last.pt', wdir / 'best.pt', 'results.txt'], [flast, fbest, fresults]): |
|
|
|
n = opt.name if opt.name.isnumeric() else '' |
|
|
|
fresults, flast, fbest = log_dir / f'results{n}.txt', wdir / f'last{n}.pt', wdir / f'best{n}.pt' |
|
|
|
for f1, f2 in zip([wdir / 'last.pt', wdir / 'best.pt', results_file], [flast, fbest, fresults]): |
|
|
|
if os.path.exists(f1): |
|
|
|
os.rename(f1, f2) # rename |
|
|
|
if str(f2).endswith('.pt'): # is *.pt |
|
|
@@ -382,7 +385,7 @@ if __name__ == '__main__': |
|
|
|
parser.add_argument('--weights', type=str, default='yolov5s.pt', help='initial weights path') |
|
|
|
parser.add_argument('--cfg', type=str, default='', help='model.yaml path') |
|
|
|
parser.add_argument('--data', type=str, default='data/coco128.yaml', help='data.yaml path') |
|
|
|
parser.add_argument('--hyp', type=str, default='', help='hyperparameters path, i.e. data/hyp.scratch.yaml') |
|
|
|
parser.add_argument('--hyp', type=str, default='data/hyp.scratch.yaml', help='hyperparameters path') |
|
|
|
parser.add_argument('--epochs', type=int, default=300) |
|
|
|
parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs') |
|
|
|
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='[train, test] image sizes') |
|
|
@@ -425,7 +428,7 @@ if __name__ == '__main__': |
|
|
|
logger.info('Resuming training from %s' % ckpt) |
|
|
|
|
|
|
|
else: |
|
|
|
opt.hyp = opt.hyp or ('data/hyp.finetune.yaml' if opt.weights else 'data/hyp.scratch.yaml') |
|
|
|
# opt.hyp = opt.hyp or ('hyp.finetune.yaml' if opt.weights else 'hyp.scratch.yaml') |
|
|
|
opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(opt.cfg), check_file(opt.hyp) # check files |
|
|
|
assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified' |
|
|
|
opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, test) |