@@ -15,7 +15,7 @@ weight_decay: 0.00036 | |||
warmup_epochs: 2.0 | |||
warmup_momentum: 0.5 | |||
warmup_bias_lr: 0.05 | |||
giou: 0.0296 | |||
box: 0.0296 | |||
cls: 0.243 | |||
cls_pw: 0.631 | |||
obj: 0.301 |
@@ -10,7 +10,7 @@ weight_decay: 0.0005 # optimizer weight decay 5e-4 | |||
warmup_epochs: 3.0 # warmup epochs (fractions ok) | |||
warmup_momentum: 0.8 # warmup initial momentum | |||
warmup_bias_lr: 0.1 # warmup initial bias lr | |||
giou: 0.05 # box loss gain | |||
box: 0.05 # box loss gain | |||
cls: 0.5 # cls loss gain | |||
cls_pw: 1.0 # cls BCELoss positive_weight | |||
obj: 1.0 # obj loss gain (scale with pixels) |
@@ -113,7 +113,7 @@ def test(data, | |||
# Compute loss | |||
if training: # if model has loss hyperparameters | |||
loss += compute_loss([x.float() for x in train_out], targets, model)[1][:3] # GIoU, obj, cls | |||
loss += compute_loss([x.float() for x in train_out], targets, model)[1][:3] # box, obj, cls | |||
# Run NMS | |||
t = time_synchronized() |
@@ -106,7 +106,7 @@ def test(data, | |||
# Compute loss | |||
if training: # if model has loss hyperparameters | |||
loss += compute_loss([x.float() for x in train_out], targets, model)[1][:3] # GIoU, obj, cls | |||
loss += compute_loss([x.float() for x in train_out], targets, model)[1][:3] # box, obj, cls | |||
# Run NMS | |||
t = time_synchronized() |
@@ -195,7 +195,7 @@ def train(hyp, opt, device, tb_writer=None): | |||
hyp['cls'] *= nc / 80. # scale coco-tuned hyp['cls'] to current dataset | |||
model.nc = nc # attach number of classes to model | |||
model.hyp = hyp # attach hyperparameters to model | |||
model.gr = 1.0 # giou loss ratio (obj_loss = 1.0 or giou) | |||
model.gr = 1.0 # iou loss ratio (obj_loss = 1.0 or iou) | |||
model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) # attach class weights | |||
model.names = names | |||
@@ -204,7 +204,7 @@ def train(hyp, opt, device, tb_writer=None): | |||
nw = max(round(hyp['warmup_epochs'] * nb), 1e3) # number of warmup iterations, max(3 epochs, 1k iterations) | |||
# nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training | |||
maps = np.zeros(nc) # mAP per class | |||
results = (0, 0, 0, 0, 0, 0, 0) # 'P', 'R', 'mAP', 'F1', 'val GIoU', 'val Objectness', 'val Classification' | |||
results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls) | |||
scheduler.last_epoch = start_epoch - 1 # do not move | |||
scaler = amp.GradScaler(enabled=cuda) | |||
logger.info('Image sizes %g train, %g test\nUsing %g dataloader workers\nLogging results to %s\n' | |||
@@ -234,7 +234,7 @@ def train(hyp, opt, device, tb_writer=None): | |||
if rank != -1: | |||
dataloader.sampler.set_epoch(epoch) | |||
pbar = enumerate(dataloader) | |||
logger.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'GIoU', 'obj', 'cls', 'total', 'targets', 'img_size')) | |||
logger.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'total', 'targets', 'img_size')) | |||
if rank in [-1, 0]: | |||
pbar = tqdm(pbar, total=nb) # progress bar | |||
optimizer.zero_grad() | |||
@@ -245,7 +245,7 @@ def train(hyp, opt, device, tb_writer=None): | |||
# Warmup | |||
if ni <= nw: | |||
xi = [0, nw] # x interp | |||
# model.gr = np.interp(ni, xi, [0.0, 1.0]) # giou loss ratio (obj_loss = 1.0 or giou) | |||
# model.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou) | |||
accumulate = max(1, np.interp(ni, xi, [1, nbs / total_batch_size]).round()) | |||
for j, x in enumerate(optimizer.param_groups): | |||
# bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0 | |||
@@ -319,21 +319,21 @@ def train(hyp, opt, device, tb_writer=None): | |||
# Write | |||
with open(results_file, 'a') as f: | |||
f.write(s + '%10.4g' * 7 % results + '\n') # P, R, mAP, F1, test_losses=(GIoU, obj, cls) | |||
f.write(s + '%10.4g' * 7 % results + '\n') # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls) | |||
if len(opt.name) and opt.bucket: | |||
os.system('gsutil cp %s gs://%s/results/results%s.txt' % (results_file, opt.bucket, opt.name)) | |||
# Tensorboard | |||
if tb_writer: | |||
tags = ['train/giou_loss', 'train/obj_loss', 'train/cls_loss', # train loss | |||
tags = ['train/box_loss', 'train/obj_loss', 'train/cls_loss', # train loss | |||
'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95', | |||
'val/giou_loss', 'val/obj_loss', 'val/cls_loss', # val loss | |||
'val/box_loss', 'val/obj_loss', 'val/cls_loss', # val loss | |||
'x/lr0', 'x/lr1', 'x/lr2'] # params | |||
for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags): | |||
tb_writer.add_scalar(tag, x, epoch) | |||
# Update best mAP | |||
fi = fitness(np.array(results).reshape(1, -1)) # fitness_i = weighted combination of [P, R, mAP, F1] | |||
fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95] | |||
if fi > best_fitness: | |||
best_fitness = fi | |||
@@ -463,7 +463,7 @@ if __name__ == '__main__': | |||
'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok) | |||
'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum | |||
'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr | |||
'giou': (1, 0.02, 0.2), # GIoU loss gain | |||
'box': (1, 0.02, 0.2), # box loss gain | |||
'cls': (1, 0.2, 4.0), # cls loss gain | |||
'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight | |||
'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels) |
@@ -509,11 +509,11 @@ def compute_loss(p, targets, model): # predictions, targets, model | |||
pxy = ps[:, :2].sigmoid() * 2. - 0.5 | |||
pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i] | |||
pbox = torch.cat((pxy, pwh), 1).to(device) # predicted box | |||
giou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, CIoU=True) # giou(prediction, target) | |||
lbox += (1.0 - giou).mean() # giou loss | |||
iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, CIoU=True) # iou(prediction, target) | |||
lbox += (1.0 - iou).mean() # iou loss | |||
# Objectness | |||
tobj[b, a, gj, gi] = (1.0 - model.gr) + model.gr * giou.detach().clamp(0).type(tobj.dtype) # giou ratio | |||
tobj[b, a, gj, gi] = (1.0 - model.gr) + model.gr * iou.detach().clamp(0).type(tobj.dtype) # iou ratio | |||
# Classification | |||
if model.nc > 1: # cls loss (only if multiple classes) | |||
@@ -528,7 +528,7 @@ def compute_loss(p, targets, model): # predictions, targets, model | |||
lobj += BCEobj(pi[..., 4], tobj) * balance[i] # obj loss | |||
s = 3 / np # output count scaling | |||
lbox *= h['giou'] * s | |||
lbox *= h['box'] * s | |||
lobj *= h['obj'] * s * (1.4 if np == 4 else 1.) | |||
lcls *= h['cls'] * s | |||
bs = tobj.shape[0] # batch size | |||
@@ -1234,7 +1234,7 @@ def plot_evolution(yaml_file='data/hyp.finetune.yaml'): # from utils.general im | |||
def plot_results_overlay(start=0, stop=0): # from utils.general import *; plot_results_overlay() | |||
# Plot training 'results*.txt', overlaying train and val losses | |||
s = ['train', 'train', 'train', 'Precision', 'mAP@0.5', 'val', 'val', 'val', 'Recall', 'mAP@0.5:0.95'] # legends | |||
t = ['GIoU', 'Objectness', 'Classification', 'P-R', 'mAP-F1'] # titles | |||
t = ['Box', 'Objectness', 'Classification', 'P-R', 'mAP-F1'] # titles | |||
for f in sorted(glob.glob('results*.txt') + glob.glob('../../Downloads/results*.txt')): | |||
results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T | |||
n = results.shape[1] # number of rows | |||
@@ -1254,13 +1254,13 @@ def plot_results_overlay(start=0, stop=0): # from utils.general import *; plot_ | |||
fig.savefig(f.replace('.txt', '.png'), dpi=200) | |||
def plot_results(start=0, stop=0, bucket='', id=(), labels=(), | |||
save_dir=''): # from utils.general import *; plot_results() | |||
def plot_results(start=0, stop=0, bucket='', id=(), labels=(), save_dir=''): | |||
# from utils.general import *; plot_results() | |||
# Plot training 'results*.txt' as seen in https://github.com/ultralytics/yolov5#reproduce-our-training | |||
fig, ax = plt.subplots(2, 5, figsize=(12, 6)) | |||
ax = ax.ravel() | |||
s = ['GIoU', 'Objectness', 'Classification', 'Precision', 'Recall', | |||
'val GIoU', 'val Objectness', 'val Classification', 'mAP@0.5', 'mAP@0.5:0.95'] | |||
s = ['Box', 'Objectness', 'Classification', 'Precision', 'Recall', | |||
'val Box', 'val Objectness', 'val Classification', 'mAP@0.5', 'mAP@0.5:0.95'] | |||
if bucket: | |||
# os.system('rm -rf storage.googleapis.com') | |||
# files = ['https://storage.googleapis.com/%s/results%g.txt' % (bucket, x) for x in id] |