|
|
@@ -56,6 +56,7 @@ def run(weights=ROOT / 'yolov5s.pt', # model.pt path(s) |
|
|
|
hide_labels=False, # hide labels |
|
|
|
hide_conf=False, # hide confidences |
|
|
|
half=False, # use FP16 half-precision inference |
|
|
|
dnn=False, # use OpenCV DNN for ONNX inference |
|
|
|
): |
|
|
|
source = str(source) |
|
|
|
save_img = not nosave and not source.endswith('.txt') # save inference images |
|
|
@@ -72,7 +73,7 @@ def run(weights=ROOT / 'yolov5s.pt', # model.pt path(s) |
|
|
|
half &= device.type != 'cpu' # half precision only supported on CUDA |
|
|
|
|
|
|
|
# Load model |
|
|
|
w = weights[0] if isinstance(weights, list) else weights |
|
|
|
w = str(weights[0] if isinstance(weights, list) else weights) |
|
|
|
classify, suffix, suffixes = False, Path(w).suffix.lower(), ['.pt', '.onnx', '.tflite', '.pb', ''] |
|
|
|
check_suffix(w, suffixes) # check weights have acceptable suffix |
|
|
|
pt, onnx, tflite, pb, saved_model = (suffix == x for x in suffixes) # backend booleans |
|
|
@@ -87,9 +88,13 @@ def run(weights=ROOT / 'yolov5s.pt', # model.pt path(s) |
|
|
|
modelc = load_classifier(name='resnet50', n=2) # initialize |
|
|
|
modelc.load_state_dict(torch.load('resnet50.pt', map_location=device)['model']).to(device).eval() |
|
|
|
elif onnx: |
|
|
|
check_requirements(('onnx', 'onnxruntime')) |
|
|
|
import onnxruntime |
|
|
|
session = onnxruntime.InferenceSession(w, None) |
|
|
|
if dnn: |
|
|
|
# check_requirements(('opencv-python>=4.5.4',)) |
|
|
|
net = cv2.dnn.readNetFromONNX(w) |
|
|
|
else: |
|
|
|
check_requirements(('onnx', 'onnxruntime')) |
|
|
|
import onnxruntime |
|
|
|
session = onnxruntime.InferenceSession(w, None) |
|
|
|
else: # TensorFlow models |
|
|
|
check_requirements(('tensorflow>=2.4.1',)) |
|
|
|
import tensorflow as tf |
|
|
@@ -145,7 +150,11 @@ def run(weights=ROOT / 'yolov5s.pt', # model.pt path(s) |
|
|
|
visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False |
|
|
|
pred = model(img, augment=augment, visualize=visualize)[0] |
|
|
|
elif onnx: |
|
|
|
pred = torch.tensor(session.run([session.get_outputs()[0].name], {session.get_inputs()[0].name: img})) |
|
|
|
if dnn: |
|
|
|
net.setInput(img) |
|
|
|
pred = torch.tensor(net.forward()) |
|
|
|
else: |
|
|
|
pred = torch.tensor(session.run([session.get_outputs()[0].name], {session.get_inputs()[0].name: img})) |
|
|
|
else: # tensorflow model (tflite, pb, saved_model) |
|
|
|
imn = img.permute(0, 2, 3, 1).cpu().numpy() # image in numpy |
|
|
|
if pb: |
|
|
@@ -281,6 +290,7 @@ def parse_opt(): |
|
|
|
parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels') |
|
|
|
parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences') |
|
|
|
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference') |
|
|
|
parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference') |
|
|
|
opt = parser.parse_args() |
|
|
|
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand |
|
|
|
print_args(FILE.stem, opt) |