|
|
@@ -98,7 +98,6 @@ class Model(nn.Module): |
|
|
|
self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist |
|
|
|
self.names = [str(i) for i in range(self.yaml['nc'])] # default names |
|
|
|
self.inplace = self.yaml.get('inplace', True) |
|
|
|
# LOGGER.info([x.shape for x in self.forward(torch.zeros(1, ch, 64, 64))]) |
|
|
|
|
|
|
|
# Build strides, anchors |
|
|
|
m = self.model[-1] # Detect() |
|
|
@@ -110,7 +109,6 @@ class Model(nn.Module): |
|
|
|
check_anchor_order(m) |
|
|
|
self.stride = m.stride |
|
|
|
self._initialize_biases() # only run once |
|
|
|
# LOGGER.info('Strides: %s' % m.stride.tolist()) |
|
|
|
|
|
|
|
# Init weights, biases |
|
|
|
initialize_weights(self) |
|
|
@@ -119,47 +117,33 @@ class Model(nn.Module): |
|
|
|
|
|
|
|
def forward(self, x, augment=False, profile=False, visualize=False): |
|
|
|
if augment: |
|
|
|
return self.forward_augment(x) # augmented inference, None |
|
|
|
return self.forward_once(x, profile, visualize) # single-scale inference, train |
|
|
|
return self._forward_augment(x) # augmented inference, None |
|
|
|
return self._forward_once(x, profile, visualize) # single-scale inference, train |
|
|
|
|
|
|
|
def forward_augment(self, x): |
|
|
|
def _forward_augment(self, x): |
|
|
|
img_size = x.shape[-2:] # height, width |
|
|
|
s = [1, 0.83, 0.67] # scales |
|
|
|
f = [None, 3, None] # flips (2-ud, 3-lr) |
|
|
|
y = [] # outputs |
|
|
|
for si, fi in zip(s, f): |
|
|
|
xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max())) |
|
|
|
yi = self.forward_once(xi)[0] # forward |
|
|
|
yi = self._forward_once(xi)[0] # forward |
|
|
|
# cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # save |
|
|
|
yi = self._descale_pred(yi, fi, si, img_size) |
|
|
|
y.append(yi) |
|
|
|
return torch.cat(y, 1), None # augmented inference, train |
|
|
|
|
|
|
|
def forward_once(self, x, profile=False, visualize=False): |
|
|
|
def _forward_once(self, x, profile=False, visualize=False): |
|
|
|
y, dt = [], [] # outputs |
|
|
|
for m in self.model: |
|
|
|
if m.f != -1: # if not from previous layer |
|
|
|
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers |
|
|
|
|
|
|
|
if profile: |
|
|
|
c = isinstance(m, Detect) # copy input as inplace fix |
|
|
|
o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPs |
|
|
|
t = time_sync() |
|
|
|
for _ in range(10): |
|
|
|
m(x.copy() if c else x) |
|
|
|
dt.append((time_sync() - t) * 100) |
|
|
|
if m == self.model[0]: |
|
|
|
LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s} {'module'}") |
|
|
|
LOGGER.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f} {m.type}') |
|
|
|
|
|
|
|
self._profile_one_layer(m, x, dt) |
|
|
|
x = m(x) # run |
|
|
|
y.append(x if m.i in self.save else None) # save output |
|
|
|
|
|
|
|
if visualize: |
|
|
|
feature_visualization(x, m.type, m.i, save_dir=visualize) |
|
|
|
|
|
|
|
if profile: |
|
|
|
LOGGER.info('%.1fms total' % sum(dt)) |
|
|
|
return x |
|
|
|
|
|
|
|
def _descale_pred(self, p, flips, scale, img_size): |
|
|
@@ -179,6 +163,19 @@ class Model(nn.Module): |
|
|
|
p = torch.cat((x, y, wh, p[..., 4:]), -1) |
|
|
|
return p |
|
|
|
|
|
|
|
def _profile_one_layer(self, m, x, dt): |
|
|
|
c = isinstance(m, Detect) # is final layer, copy input as inplace fix |
|
|
|
o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPs |
|
|
|
t = time_sync() |
|
|
|
for _ in range(10): |
|
|
|
m(x.copy() if c else x) |
|
|
|
dt.append((time_sync() - t) * 100) |
|
|
|
if m == self.model[0]: |
|
|
|
LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s} {'module'}") |
|
|
|
LOGGER.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f} {m.type}') |
|
|
|
if c: |
|
|
|
LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s} Total") |
|
|
|
|
|
|
|
def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency |
|
|
|
# https://arxiv.org/abs/1708.02002 section 3.3 |
|
|
|
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1. |