Kaynağa Gözat

Refactor `forward()` method profiling (#4816)

modifyDataloader
Glenn Jocher GitHub 3 yıl önce
ebeveyn
işleme
0dc725e3dc
Veri tabanında bu imza için bilinen anahtar bulunamadı GPC Anahtar Kimliği: 4AEE18F83AFDEB23
1 değiştirilmiş dosya ile 19 ekleme ve 22 silme
  1. +19
    -22
      models/yolo.py

+ 19
- 22
models/yolo.py Dosyayı Görüntüle

@@ -98,7 +98,6 @@ class Model(nn.Module):
self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist
self.names = [str(i) for i in range(self.yaml['nc'])] # default names
self.inplace = self.yaml.get('inplace', True)
# LOGGER.info([x.shape for x in self.forward(torch.zeros(1, ch, 64, 64))])

# Build strides, anchors
m = self.model[-1] # Detect()
@@ -110,7 +109,6 @@ class Model(nn.Module):
check_anchor_order(m)
self.stride = m.stride
self._initialize_biases() # only run once
# LOGGER.info('Strides: %s' % m.stride.tolist())

# Init weights, biases
initialize_weights(self)
@@ -119,47 +117,33 @@ class Model(nn.Module):

def forward(self, x, augment=False, profile=False, visualize=False):
if augment:
return self.forward_augment(x) # augmented inference, None
return self.forward_once(x, profile, visualize) # single-scale inference, train
return self._forward_augment(x) # augmented inference, None
return self._forward_once(x, profile, visualize) # single-scale inference, train

def forward_augment(self, x):
def _forward_augment(self, x):
img_size = x.shape[-2:] # height, width
s = [1, 0.83, 0.67] # scales
f = [None, 3, None] # flips (2-ud, 3-lr)
y = [] # outputs
for si, fi in zip(s, f):
xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
yi = self.forward_once(xi)[0] # forward
yi = self._forward_once(xi)[0] # forward
# cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # save
yi = self._descale_pred(yi, fi, si, img_size)
y.append(yi)
return torch.cat(y, 1), None # augmented inference, train

def forward_once(self, x, profile=False, visualize=False):
def _forward_once(self, x, profile=False, visualize=False):
y, dt = [], [] # outputs
for m in self.model:
if m.f != -1: # if not from previous layer
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers

if profile:
c = isinstance(m, Detect) # copy input as inplace fix
o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPs
t = time_sync()
for _ in range(10):
m(x.copy() if c else x)
dt.append((time_sync() - t) * 100)
if m == self.model[0]:
LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s} {'module'}")
LOGGER.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f} {m.type}')

self._profile_one_layer(m, x, dt)
x = m(x) # run
y.append(x if m.i in self.save else None) # save output

if visualize:
feature_visualization(x, m.type, m.i, save_dir=visualize)

if profile:
LOGGER.info('%.1fms total' % sum(dt))
return x

def _descale_pred(self, p, flips, scale, img_size):
@@ -179,6 +163,19 @@ class Model(nn.Module):
p = torch.cat((x, y, wh, p[..., 4:]), -1)
return p

def _profile_one_layer(self, m, x, dt):
c = isinstance(m, Detect) # is final layer, copy input as inplace fix
o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPs
t = time_sync()
for _ in range(10):
m(x.copy() if c else x)
dt.append((time_sync() - t) * 100)
if m == self.model[0]:
LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s} {'module'}")
LOGGER.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f} {m.type}')
if c:
LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s} Total")

def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency
# https://arxiv.org/abs/1708.02002 section 3.3
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.

Yükleniyor…
İptal
Kaydet